3 research outputs found

    Characterization of low power radiation-hard reed-solomon code protected serializers in 65-nm for HEP experiments electronics

    No full text
    The availability of low-power, radiation-resistant components has an enormous importance in the development of the electronic systems for modern detectors in a High Energy Physics (HEP) experiment. This paper describes the characterization in terms of radiation effects of two serializer blocks within a high speed transmitter, prior developed with the objective of achieving a power consumption of less than 30 mW at the operating speed of 4.8 Gbit/sec. Within the first serializer, called “simple TMR”, a traditional solution, based on the hardware redundancy, has been implemented. In the second case a new architecture, less power consuming, called “code protected”, has been proposed. The tests previously performed shown an average consumption of ~30 mW and ~19 mW, respectively, for a bit rate of 4.8 Gbit/sec but do not fully clarify if the blocks are suitable for working under extremely high radiation levels. Hence, a deep radiation hardness investigation has been performed and presented here to confirm the availability of these blocks in a HEP electronic system. SEU sensitivities are measured and bit error rates better than 2 E-15 are obtained, confirming that the “code protected” solution assures reliable communications in HEP experiments environment with a smaller power consumption. These blocks have also been designed and tested to cope with a total ionizing dose of 100 Mrad over 10 years of operation.The availability of low-power, radiation-resistant components has an enormous importance in the development of the electronic systems for modern detectors in a High Energy Physics (HEP) experiment. This paper describes the characterization in terms of radiation effects of two serializer blocks within a high speed transmitter, prior developed with the objective of achieving a power consumption of less than 30 mW at the operating speed of 4.8 Gbit/sec. Within the first serializer, called "simple TMR", a traditional solution, based on the hardware redundancy, has been implemented. In the second case a new architecture, less power consuming, called "code protected", has been proposed. The tests previously performed shown an average consumption of ∌30 mW and ∌19 mW, respectively, for a bit rate of 4.8 Gbit/sec but do not fully clarify if the blocks are suitable for working under extremely high radiation levels. Hence, a deep radiation hardness investigation has been performed and presented here to confirm the availability of these blocks in a HEP electronic system. SEU sensitivities are measured and bit error rates better than 2 E-15 are obtained, confirming that the "code protected" solution assures reliable communications in HEP experiments environment with a smaller power consumption. These blocks have also been designed and tested to cope with a total ionizing dose of 100 Mrad over 10 years of operation

    Topical Workshop on Electronics for Particle Physics

    Get PDF

    Topical Workshop on Electronics for Particle Physics

    Get PDF
    The purpose of the workshop was to present results and original concepts for electronics research and development relevant to particle physics experiments as well as accelerator and beam instrumentation at future facilities; to review the status of electronics for the LHC experiments; to identify and encourage common efforts for the development of electronics; and to promote information exchange and collaboration in the relevant engineering and physics communities
    corecore