212 research outputs found

    On Hamilton decompositions of infinite circulant graphs

    Get PDF
    The natural infinite analogue of a (finite) Hamilton cycle is a two-way-infinite Hamilton path (connected spanning 2-valent subgraph). Although it is known that every connected 2k-valent infinite circulant graph has a two-way-infinite Hamilton path, there exist many such graphs that do not have a decomposition into k edge-disjoint two-way-infinite Hamilton paths. This contrasts with the finite case where it is conjectured that every 2k-valent connected circulant graph has a decomposition into k edge-disjoint Hamilton cycles. We settle the problem of decomposing 2k-valent infinite circulant graphs into k edge-disjoint two-way-infinite Hamilton paths for k=2, in many cases when k=3, and in many other cases including where the connection set is ±{1,2,...,k} or ±{1,2,...,k - 1, 1,2,...,k + 1}

    Representation of Cyclotomic Fields and Their Subfields

    Full text link
    Let \K be a finite extension of a characteristic zero field \F. We say that the pair of n×nn\times n matrices (A,B)(A,B) over \F represents \K if \K \cong \F[A]/ where \F[A] denotes the smallest subalgebra of M_n(\F) containing AA and is an ideal in \F[A] generated by BB. In particular, AA is said to represent the field \K if there exists an irreducible polynomial q(x)\in \F[x] which divides the minimal polynomial of AA and \K \cong \F[A]/. In this paper, we identify the smallest circulant-matrix representation for any subfield of a cyclotomic field. Furthermore, if pp is any prime and \K is a subfield of the pp-th cyclotomic field, then we obtain a zero-one circulant matrix AA of size p×pp\times p such that (A,\J) represents \K, where \J is the matrix with all entries 1. In case, the integer nn has at most two distinct prime factors, we find the smallest 0-1 companion-matrix that represents the nn-th cyclotomic field. We also find bounds on the size of such companion matrices when nn has more than two prime factors.Comment: 17 page

    On polynomial digraphs

    Get PDF
    Let Φ(x,y)\Phi(x,y) be a bivariate polynomial with complex coefficients. The zeroes of Φ(x,y)\Phi(x,y) are given a combinatorial structure by considering them as arcs of a directed graph G(Φ)G(\Phi). This paper studies some relationship between the polynomial Φ(x,y)\Phi(x,y) and the structure of G(Φ)G(\Phi).Comment: 13 pages, 6 figures, See also http://www-ma2.upc.edu/~montes
    • …
    corecore