49 research outputs found

    Second-order subdifferential calculus with applications to tilt stability in optimization

    Get PDF
    The paper concerns the second-order generalized differentiation theory of variational analysis and new applications of this theory to some problems of constrained optimization in finitedimensional spaces. The main attention is paid to the so-called (full and partial) second-order subdifferentials of extended-real-valued functions, which are dual-type constructions generated by coderivatives of frst-order subdifferential mappings. We develop an extended second-order subdifferential calculus and analyze the basic second-order qualification condition ensuring the fulfillment of the principal secondorder chain rule for strongly and fully amenable compositions. The calculus results obtained in this way and computing the second-order subdifferentials for piecewise linear-quadratic functions and their major specifications are applied then to the study of tilt stability of local minimizers for important classes of problems in constrained optimization that include, in particular, problems of nonlinear programming and certain classes of extended nonlinear programs described in composite terms

    A Generalized Newton Method for Subgradient Systems

    Full text link
    This paper proposes and develops a new Newton-type algorithm to solve subdifferential inclusions defined by subgradients of extended-real-valued prox-regular functions. The proposed algorithm is formulated in terms of the second-order subdifferential of such functions that enjoys extensive calculus rules and can be efficiently computed for broad classes of extended-real-valued functions. Based on this and on metric regularity and subregularity properties of subgradient mappings, we establish verifiable conditions ensuring well-posedness of the proposed algorithm and its local superlinear convergence. The obtained results are also new for the class of equations defined by continuously differentiable functions with Lipschitzian derivatives (C1,1\mathcal{C}^{1,1} functions), which is the underlying case of our consideration. The developed algorithm for prox-regular functions is formulated in terms of proximal mappings related to and reduces to Moreau envelopes. Besides numerous illustrative examples and comparison with known algorithms for C1,1\mathcal{C}^{1,1} functions and generalized equations, the paper presents applications of the proposed algorithm to the practically important class of Lasso problems arising in statistics and machine learning.Comment: 35 page

    Globally Convergent Coderivative-Based Generalized Newton Methods in Nonsmooth Optimization

    Full text link
    This paper proposes and justifies two globally convergent Newton-type methods to solve unconstrained and constrained problems of nonsmooth optimization by using tools of variational analysis and generalized differentiation. Both methods are coderivative-based and employ generalized Hessians (coderivatives of subgradient mappings) associated with objective functions, which are either of class C1,1\mathcal{C}^{1,1}, or are represented in the form of convex composite optimization, where one of the terms may be extended-real-valued. The proposed globally convergent algorithms are of two types. The first one extends the damped Newton method and requires positive-definiteness of the generalized Hessians for its well-posedness and efficient performance, while the other algorithm is of {the regularized Newton type} being well-defined when the generalized Hessians are merely positive-semidefinite. The obtained convergence rates for both methods are at least linear, but become superlinear under the semismooth∗^* property of subgradient mappings. Problems of convex composite optimization are investigated with and without the strong convexity assumption {on smooth parts} of objective functions by implementing the machinery of forward-backward envelopes. Numerical experiments are conducted for Lasso problems and for box constrained quadratic programs with providing performance comparisons of the new algorithms and some other first-order and second-order methods that are highly recognized in nonsmooth optimization.Comment: arXiv admin note: text overlap with arXiv:2101.1055

    Local strong maximal monotonicity and full stability for parametric variational systems

    Full text link
    The paper introduces and characterizes new notions of Lipschitzian and H\"olderian full stability of solutions to general parametric variational systems described via partial subdifferential and normal cone mappings acting in Hilbert spaces. These notions, postulated certain quantitative properties of single-valued localizations of solution maps, are closely related to local strong maximal monotonicity of associated set-valued mappings. Based on advanced tools of variational analysis and generalized differentiation, we derive verifiable characterizations of the local strong maximal monotonicity and full stability notions under consideration via some positive-definiteness conditions involving second-order constructions of variational analysis. The general results obtained are specified for important classes of variational inequalities and variational conditions in both finite and infinite dimensions
    corecore