100,545 research outputs found

    Two-Way Unary Temporal Logic over Trees

    Full text link
    We consider a temporal logic EF+F^-1 for unranked, unordered finite trees. The logic has two operators: EF\phi, which says "in some proper descendant \phi holds", and F^-1\phi, which says "in some proper ancestor \phi holds". We present an algorithm for deciding if a regular language of unranked finite trees can be expressed in EF+F^-1. The algorithm uses a characterization expressed in terms of forest algebras.Comment: 29 pages. Journal version of a LICS 07 pape

    EF+EX Forest Algebras

    Full text link
    We examine languages of unranked forests definable using the temporal operators EF and EX. We characterize the languages definable in this logic, and various fragments thereof, using the syntactic forest algebras introduced by Bojanczyk and Walukiewicz. Our algebraic characterizations yield efficient algorithms for deciding when a given language of forests is definable in this logic. The proofs are based on understanding the wreath product closures of a few small algebras, for which we introduce a general ideal theory for forest algebras. This combines ideas from the work of Bojanczyk and Walukiewicz for the analogous logics on binary trees and from early work of Stiffler on wreath product of finite semigroups

    Logic Meets Algebra: the Case of Regular Languages

    Full text link
    The study of finite automata and regular languages is a privileged meeting point of algebra and logic. Since the work of Buchi, regular languages have been classified according to their descriptive complexity, i.e. the type of logical formalism required to define them. The algebraic point of view on automata is an essential complement of this classification: by providing alternative, algebraic characterizations for the classes, it often yields the only opportunity for the design of algorithms that decide expressibility in some logical fragment. We survey the existing results relating the expressibility of regular languages in logical fragments of MSO[S] with algebraic properties of their minimal automata. In particular, we show that many of the best known results in this area share the same underlying mechanics and rely on a very strong relation between logical substitutions and block-products of pseudovarieties of monoid. We also explain the impact of these connections on circuit complexity theory.Comment: 37 page

    Wreath Products of Forest Algebras, with Applications to Tree Logics

    Full text link
    We use the recently developed theory of forest algebras to find algebraic characterizations of the languages of unranked trees and forests definable in various logics. These include the temporal logics CTL and EF, and first-order logic over the ancestor relation. While the characterizations are in general non-effective, we are able to use them to formulate necessary conditions for definability and provide new proofs that a number of languages are not definable in these logics

    Robustness: a New Form of Heredity Motivated by Dynamic Networks

    Full text link
    We investigate a special case of hereditary property in graphs, referred to as {\em robustness}. A property (or structure) is called robust in a graph GG if it is inherited by all the connected spanning subgraphs of GG. We motivate this definition using two different settings of dynamic networks. The first corresponds to networks of low dynamicity, where some links may be permanently removed so long as the network remains connected. The second corresponds to highly-dynamic networks, where communication links appear and disappear arbitrarily often, subject only to the requirement that the entities are temporally connected in a recurrent fashion ({\it i.e.} they can always reach each other through temporal paths). Each context induces a different interpretation of the notion of robustness. We start by motivating the definition and discussing the two interpretations, after what we consider the notion independently from its interpretation, taking as our focus the robustness of {\em maximal independent sets} (MIS). A graph may or may not admit a robust MIS. We characterize the set of graphs \forallMIS in which {\em all} MISs are robust. Then, we turn our attention to the graphs that {\em admit} a robust MIS (\existsMIS). This class has a more complex structure; we give a partial characterization in terms of elementary graph properties, then a complete characterization by means of a (polynomial time) decision algorithm that accepts if and only if a robust MIS exists. This algorithm can be adapted to construct such a solution if one exists

    Two-variable logics with some betweenness relations: Expressiveness, satisfiability and membership

    Get PDF
    We study two extensions of FO2[<], first-order logic interpreted in finite words, in which formulas are restricted to use only two variables. We adjoin to this language two-variable atomic formulas that say, "the letter aa appears between positions xx and yy" and "the factor uu appears between positions xx and yy". These are, in a sense, the simplest properties that are not expressible using only two variables. We present several logics, both first-order and temporal, that have the same expressive power, and find matching lower and upper bounds for the complexity of satisfiability for each of these formulations. We give effective conditions, in terms of the syntactic monoid of a regular language, for a property to be expressible in these logics. This algebraic analysis allows us to prove, among other things, that our new logics have strictly less expressive power than full first-order logic FO[<]. Our proofs required the development of novel techniques concerning factorizations of words

    Tree Languages Defined in First-Order Logic with One Quantifier Alternation

    Get PDF
    We study tree languages that can be defined in \Delta_2 . These are tree languages definable by a first-order formula whose quantifier prefix is forall exists, and simultaneously by a first-order formula whose quantifier prefix is . For the quantifier free part we consider two signatures, either the descendant relation alone or together with the lexicographical order relation on nodes. We provide an effective characterization of tree and forest languages definable in \Delta_2 . This characterization is in terms of algebraic equations. Over words, the class of word languages definable in \Delta_2 forms a robust class, which was given an effective algebraic characterization by Pin and Weil

    Languages of Dot-depth One over Infinite Words

    Full text link
    Over finite words, languages of dot-depth one are expressively complete for alternation-free first-order logic. This fragment is also known as the Boolean closure of existential first-order logic. Here, the atomic formulas comprise order, successor, minimum, and maximum predicates. Knast (1983) has shown that it is decidable whether a language has dot-depth one. We extend Knast's result to infinite words. In particular, we describe the class of languages definable in alternation-free first-order logic over infinite words, and we give an effective characterization of this fragment. This characterization has two components. The first component is identical to Knast's algebraic property for finite words and the second component is a topological property, namely being a Boolean combination of Cantor sets. As an intermediate step we consider finite and infinite words simultaneously. We then obtain the results for infinite words as well as for finite words as special cases. In particular, we give a new proof of Knast's Theorem on languages of dot-depth one over finite words.Comment: Presented at LICS 201
    corecore