4 research outputs found

    Characterization of Overlap in Observational Studies

    Full text link
    Overlap between treatment groups is required for non-parametric estimation of causal effects. If a subgroup of subjects always receives the same intervention, we cannot estimate the effect of intervention changes on that subgroup without further assumptions. When overlap does not hold globally, characterizing local regions of overlap can inform the relevance of causal conclusions for new subjects, and can help guide additional data collection. To have impact, these descriptions must be interpretable for downstream users who are not machine learning experts, such as policy makers. We formalize overlap estimation as a problem of finding minimum volume sets subject to coverage constraints and reduce this problem to binary classification with Boolean rule classifiers. We then generalize this method to estimate overlap in off-policy policy evaluation. In several real-world applications, we demonstrate that these rules have comparable accuracy to black-box estimators and provide intuitive and informative explanations that can inform policy making.Comment: To appear at AISTATS 202

    Hierarchical Bias-Driven Stratification for Interpretable Causal Effect Estimation

    Full text link
    Interpretability and transparency are essential for incorporating causal effect models from observational data into policy decision-making. They can provide trust for the model in the absence of ground truth labels to evaluate the accuracy of such models. To date, attempts at transparent causal effect estimation consist of applying post hoc explanation methods to black-box models, which are not interpretable. Here, we present BICauseTree: an interpretable balancing method that identifies clusters where natural experiments occur locally. Our approach builds on decision trees with a customized objective function to improve balancing and reduce treatment allocation bias. Consequently, it can additionally detect subgroups presenting positivity violations, exclude them, and provide a covariate-based definition of the target population we can infer from and generalize to. We evaluate the method's performance using synthetic and realistic datasets, explore its bias-interpretability tradeoff, and show that it is comparable with existing approaches

    Towards Specifying And Evaluating The Trustworthiness Of An AI-Enabled System

    Get PDF
    Applied AI has shown promise in the data processing of key industries and government agencies to extract actionable information used to make important strategical decisions. One of the core features of AI-enabled systems is the trustworthiness of these systems which has an important implication for the robustness and full acceptance of these systems. In this paper, we explain what trustworthiness in AI-enabled systems means, and the key technical challenges of specifying, and verifying trustworthiness. Toward solving these technical challenges, we propose a method to specify and evaluate the trustworthiness of AI-based systems using quality-attribute scenarios and design tactics. Using our trustworthiness scenarios and design tactics, we can analyze the architectural design of AI-enabled systems to ensure that trustworthiness has been properly expressed and achieved.The contributions of the thesis include (i) the identification of the trustworthiness sub-attributes that affect the trustworthiness of AI systems (ii) the proposal of trustworthiness scenarios to specify trustworthiness in an AI system (iii) a design checklist to support the analysis of the trustworthiness of AI systems and (iv) the identification of design tactics that can be used to achieve trustworthiness in an AI system
    corecore