14,346 research outputs found

    Universal Spatiotemporal Sampling Sets for Discrete Spatially Invariant Evolution Systems

    Full text link
    Let (I,+)(I,+) be a finite abelian group and A\mathbf{A} be a circular convolution operator on 2(I)\ell^2(I). The problem under consideration is how to construct minimal ΩI\Omega \subset I and lil_i such that Y={ei,Aei,,Aliei:iΩ}Y=\{\mathbf{e}_i, \mathbf{A}\mathbf{e}_i, \cdots, \mathbf{A}^{l_i}\mathbf{e}_i: i\in \Omega\} is a frame for 2(I)\ell^2(I), where {ei:iI}\{\mathbf{e}_i: i\in I\} is the canonical basis of 2(I)\ell^2(I). This problem is motivated by the spatiotemporal sampling problem in discrete spatially invariant evolution systems. We will show that the cardinality of Ω\Omega should be at least equal to the largest geometric multiplicity of eigenvalues of A\mathbf{A}, and we consider the universal spatiotemporal sampling sets (Ω,li)(\Omega, l_i) for convolution operators A\mathbf{A} with eigenvalues subject to the same largest geometric multiplicity. We will give an algebraic characterization for such sampling sets and show how this problem is linked with sparse signal processing theory and polynomial interpolation theory

    The universal Glivenko-Cantelli property

    Full text link
    Let F be a separable uniformly bounded family of measurable functions on a standard measurable space, and let N_{[]}(F,\epsilon,\mu) be the smallest number of \epsilon-brackets in L^1(\mu) needed to cover F. The following are equivalent: 1. F is a universal Glivenko-Cantelli class. 2. N_{[]}(F,\epsilon,\mu)0 and every probability measure \mu. 3. F is totally bounded in L^1(\mu) for every probability measure \mu. 4. F does not contain a Boolean \sigma-independent sequence. It follows that universal Glivenko-Cantelli classes are uniformity classes for general sequences of almost surely convergent random measures.Comment: 26 page

    Aggregation of Votes with Multiple Positions on Each Issue

    Full text link
    We consider the problem of aggregating votes cast by a society on a fixed set of issues, where each member of the society may vote for one of several positions on each issue, but the combination of votes on the various issues is restricted to a set of feasible voting patterns. We require the aggregation to be supportive, i.e. for every issue jj the corresponding component fjf_j of every aggregator on every issue should satisfy fj(x1,,,xn){x1,,,xn}f_j(x_1, ,\ldots, x_n) \in \{x_1, ,\ldots, x_n\}. We prove that, in such a set-up, non-dictatorial aggregation of votes in a society of some size is possible if and only if either non-dictatorial aggregation is possible in a society of only two members or a ternary aggregator exists that either on every issue jj is a majority operation, i.e. the corresponding component satisfies fj(x,x,y)=fj(x,y,x)=fj(y,x,x)=x,x,yf_j(x,x,y) = f_j(x,y,x) = f_j(y,x,x) =x, \forall x,y, or on every issue is a minority operation, i.e. the corresponding component satisfies fj(x,x,y)=fj(x,y,x)=fj(y,x,x)=y,x,y.f_j(x,x,y) = f_j(x,y,x) = f_j(y,x,x) =y, \forall x,y. We then introduce a notion of uniformly non-dictatorial aggregator, which is defined to be an aggregator that on every issue, and when restricted to an arbitrary two-element subset of the votes for that issue, differs from all projection functions. We first give a characterization of sets of feasible voting patterns that admit a uniformly non-dictatorial aggregator. Then making use of Bulatov's dichotomy theorem for conservative constraint satisfaction problems, we connect social choice theory with combinatorial complexity by proving that if a set of feasible voting patterns XX has a uniformly non-dictatorial aggregator of some arity then the multi-sorted conservative constraint satisfaction problem on XX, in the sense introduced by Bulatov and Jeavons, with each issue representing a sort, is tractable; otherwise it is NP-complete
    corecore