2 research outputs found

    Characteristics of Evoked Potential Multiple EEG Recordings in Patients with Chronic Pain by Means of Parallel Factor Analysis

    Get PDF
    This paper presents an alternative method, called as parallel factor analysis (PARAFAC) with a continuous wavelet transform, to analyze of brain activity in patients with chronic pain in the time-frequency-channel domain and quantifies differences between chronic pain patients and controls in these domains. The event related multiple EEG recordings of the chronic pain patients and non-pain controls with somatosensory stimuli (pain, random pain, touch, random touch) are analyzed. Multiple linear regression (MLR) is applied to describe the effects of aging on the frequency response differences between patients and controls. The results show that the somatosensory cortical responses occurred around 250 ms in both groups. In the frequency domain, the neural response frequency in the pain group (around 4 Hz) was less than that in the control group (around 5.5 Hz) under the somatosensory stimuli. In the channel domain, cortical activation was predominant in the frontal region for the chronic pain group and in the central region for controls. The indices of active ratios were statistical significant between the two groups in the frontal and central regions. These findings demonstrate that the PARAFAC is an interesting method to understanding the pathophysiological characteristics of chronic pain

    The Frontal Area with Higher Frequency Response Is the Principal Feature of Laser-Evoked Potentials in Rats with Chronic Inflammatory Pain: A Parallel Factor Analysis Study

    Get PDF
    Chronic pain is a pathological developing course of pain. In clinic, an objective indicator is needed for diagnosing and better controlling chronic pain. The abnormal neural responses in chronic pain are reflected by multiple event-related potentials (ERPs) in time, frequency, and location domain, respectively. However, multiple changes in ERPs are not applicable in clinic. So, the principal feature covered the most informative changes extracted from these three domains of ERP during the development of chronic pain is needed. In the present study, a parallel factor analysis method was employed to extract time–frequency–channel features of laser-evoked potential (LEP) simultaneously from rats with chronic inflammatory pain. Results showed that the main feature of LEP in channel domain locates in the frontal brain region in rats with chronic inflammatory pain while in the parietal brain region in control rats. In the frequency domain, the main frequency of LEP was significantly higher in chronic inflammatory pain rats than that in control rats. These findings indicate that the frontal region with higher frequency response to nociceptive information is the principal feature in the chronic pain state. Our study provided not only a principal feature of LEP but also a promising strategy for chronic pain, which is potential for clinic application
    corecore