5 research outputs found

    Towards electroactive gel artificial muscle structures

    Get PDF

    PVC gel based artificial muscles: Characterizations and actuation modular constructions

    Get PDF
    Polymer materials based artificial muscles have the properties of being soft, lightweight, and flexible which are similar to the nature muscular actuators. In our previous study, we have developed a contraction type artificial muscle based on plasticized poly vinyl chloride (PVC) gel and meshed electrodes. And we have improved the characteristics to make it close to the level of natural muscle. It has many positive characteristics, such as stable actuation in the air, high output, notable response rate, and low power consumption. So a wide application is expected. However, for practical applications, it is necessary to consider some specific criteria, such as performance criteria and structural criteria. In this study, we introduced the most updated properties of PVC gel artificial muscles and proposed three types of mechanical actuation modular constructions for making the PVC gel artificial muscle as a robust actuation device for robotics and mechatronics. And we tested a prototype to examine the effectiveness of the proposed modules. Finally, an analytical model for the static characteristics of PVC gel artificial muscles at different applied voltages was derived and showed good agreement with experimental results measured by a prototype of modules. (C) 2015 Elsevier B.V. All rights reserved.ArticleSENSORS AND ACTUATORS A-PHYSICAL. 233:246-258 (2015)journal articl

    The development of an adaptive and reactive interface system for lower limb prosthetic application

    Get PDF
    Deep tissue injury (DTI) is a known problem correlating to the use of a prosthetic by a transtibial amputee (TTA), causing ulcer-like wounds on the residual limb caused by stress-induced cell necrosis. The magnitude of these stresses at the bone tissue interface has been identified computationally, far exceeding those measured at the skin's surface. Limited technology is available to directly target and reduce such cellular loading and actively reduce the risk of DTI from below-knee use. The primary aim of this project was to identify whether a bespoke prosthetic socket system could actively stiffen the tissues of the lower limb. Stabilising the residual tibia during ambulation and reducing stress concentrations on the cells. To achieve this, a proof-of-concept device was designed and manufactured, a system that allowed the change in displacement of a magnet to be responded to by counterbalancing load. The device was evaluated through experimentation on an able-bodied subject wearing an orthotic device designed to replicate the environment of a prosthetic socket. The chosen sensor effector system was validated against vector data generated by the Motek Medical Computer Assisted Rehabilitation Environment (CAREN.) The project explored a new concept of reactive loading of a below-knee prosthesis to reduce tibial/socket oscillation. The evaluation of the device indicated that external loading of the residual limb in such a manner could reduce the magnitude of rotation about the tibia and therefore minimise the conditions by which DTIs are known to occur. Efforts were made to move the design to the next iteration, focusing on implementing the target demographic.Deep tissue injury (DTI) is a known problem correlating to the use of a prosthetic by a transtibial amputee (TTA), causing ulcer-like wounds on the residual limb caused by stress-induced cell necrosis. The magnitude of these stresses at the bone tissue interface has been identified computationally, far exceeding those measured at the skin's surface. Limited technology is available to directly target and reduce such cellular loading and actively reduce the risk of DTI from below-knee use. The primary aim of this project was to identify whether a bespoke prosthetic socket system could actively stiffen the tissues of the lower limb. Stabilising the residual tibia during ambulation and reducing stress concentrations on the cells. To achieve this, a proof-of-concept device was designed and manufactured, a system that allowed the change in displacement of a magnet to be responded to by counterbalancing load. The device was evaluated through experimentation on an able-bodied subject wearing an orthotic device designed to replicate the environment of a prosthetic socket. The chosen sensor effector system was validated against vector data generated by the Motek Medical Computer Assisted Rehabilitation Environment (CAREN.) The project explored a new concept of reactive loading of a below-knee prosthesis to reduce tibial/socket oscillation. The evaluation of the device indicated that external loading of the residual limb in such a manner could reduce the magnitude of rotation about the tibia and therefore minimise the conditions by which DTIs are known to occur. Efforts were made to move the design to the next iteration, focusing on implementing the target demographic
    corecore