92,248 research outputs found
Mitochondrial molecular chaperones
After synthesis in the cytosol, most mitochondrial proteins must traverse mitochondrial membranes to reach their functional location. During this process, proteins become unfolded and then refold to attain their native conformation after crossing the lipid bilayers. Mitochondrial molecular chaperones play an essential mechanistic role at various steps of this process. They facilitate presequence translocation, unfolding of the cytosol-localized domains of precursor proteins, movement across the mitochondrial membranes and, finally, folding of newly imported proteins within the matrix
Chaperone driven polymer translocation through Nanopore: spatial distribution and binding energy
Chaperones are binding proteins which work as a driving force to bias the
biopolymer translocation by binding to it near the pore and preventing its
backsliding. Chaperones may have different spatial distribution. Recently we
show the importance of their spatial distribution in translocation and how it
effects on sequence dependency of the translocation time. Here we focus on
homopolymers and exponential distribution. As a result of the exponential
distribution of chaperones, energy dependency of the translocation time will
changed and one see a minimum in translocation time versus effective energy
curve. The same trend can be seen in scaling exponent of time versus polymer
length, (). Interestingly in some special cases e.g.
chaperones of size and with exponential distribution rate of
, the minimum reaches even to amount of less than (). We
explain the possibility of this rare result and base on a theoretical
discussion we show that by taking into account the velocity dependency of the
translocation on polymer length, one could truly predict the amount of this
minimum
Chaperones as integrators of cellular networks: Changes of cellular integrity in stress and diseases
Cellular networks undergo rearrangements during stress and diseases. In
un-stressed state the yeast protein-protein interaction network (interactome)
is highly compact, and the centrally organized modules have a large overlap.
During stress several original modules became more separated, and a number of
novel modules also appear. A few basic functions, such as the proteasome
preserve their central position. However, several functions with high energy
demand, such the cell-cycle regulation loose their original centrality during
stress. A number of key stress-dependent protein complexes, such as the
disaggregation-specific chaperone, Hsp104, gain centrality in the stressed
yeast interactome. Molecular chaperones, heat shock, or stress proteins form
complex interaction networks (the chaperome) with each other and their
partners. Here we show that the human chaperome recovers the segregation of
protein synthesis-coupled and stress-related chaperones observed in yeast
recently. Examination of yeast and human interactomes shows that (1) chaperones
are inter-modular integrators of protein-protein interaction networks, which
(2) often bridge hubs and (3) are favorite candidates for extensive
phosphorylation. Moreover, chaperones (4) become more central in the
organization of the isolated modules of the stressed yeast protein-protein
interaction network, which highlights their importance in the de-coupling and
re-coupling of network modules during and after stress. Chaperone-mediated
evolvability of cellular networks may play a key role in cellular adaptation
during stress and various polygenic and chronic diseases, such as cancer,
diabetes or neurodegeneration.Comment: 13 pages, 3 figures, 1 glossar
Aging cellular networks: chaperones as major participants
We increasingly rely on the network approach to understand the complexity of
cellular functions. Chaperones (heat shock proteins) are key "networkers",
which have among their functions to sequester and repair damaged protein. In
order to link the network approach and chaperones with the aging process, we
first summarize the properties of aging networks suggesting a "weak link theory
of aging". This theory suggests that age-related random damage primarily
affects the overwhelming majority of the low affinity, transient interactions
(weak links) in cellular networks leading to increased noise, destabilization
and diversity. These processes may be further amplified by age-specific network
remodelling and by the sequestration of weakly linked cellular proteins to
protein aggregates of aging cells. Chaperones are weakly linked hubs [i.e.,
network elements with a large number of connections] and inter-modular bridge
elements of protein-protein interaction, signalling and mitochondrial networks.
As aging proceeds, the increased overload of damaged proteins is an especially
important element contributing to cellular disintegration and destabilization.
Additionally, chaperone overload may contribute to the increase of "noise" in
aging cells, which leads to an increased stochastic resonance resulting in a
deficient discrimination between signals and noise. Chaperone- and other
multi-target therapies, which restore the missing weak links in aging cellular
networks, may emerge as important anti-aging interventions.Comment: 7 pages, 4 figure
Regulation of CLC-1 chloride channel biosynthesis by FKBP8 and Hsp90β.
Mutations in human CLC-1 chloride channel are associated with the skeletal muscle disorder myotonia congenita. The disease-causing mutant A531V manifests enhanced proteasomal degradation of CLC-1. We recently found that CLC-1 degradation is mediated by cullin 4 ubiquitin ligase complex. It is currently unclear how quality control and protein degradation systems coordinate with each other to process the biosynthesis of CLC-1. Herein we aim to ascertain the molecular nature of the protein quality control system for CLC-1. We identified three CLC-1-interacting proteins that are well-known heat shock protein 90 (Hsp90)-associated co-chaperones: FK506-binding protein 8 (FKBP8), activator of Hsp90 ATPase homolog 1 (Aha1), and Hsp70/Hsp90 organizing protein (HOP). These co-chaperones promote both the protein level and the functional expression of CLC-1 wild-type and A531V mutant. CLC-1 biosynthesis is also facilitated by the molecular chaperones Hsc70 and Hsp90β. The protein stability of CLC-1 is notably increased by FKBP8 and the Hsp90β inhibitor 17-allylamino-17-demethoxygeldanamycin (17-AAG) that substantially suppresses cullin 4 expression. We further confirmed that cullin 4 may interact with Hsp90β and FKBP8. Our data are consistent with the idea that FKBP8 and Hsp90β play an essential role in the late phase of CLC-1 quality control by dynamically coordinating protein folding and degradation
Hsp70 and Hsp40 inhibit an inter-domain interaction necessary for transcriptional activity in the androgen receptor.
Molecular chaperones such as Hsp40 and Hsp70 hold the androgen receptor (AR) in an inactive conformation. They are released in the presence of androgens, enabling transactivation and causing the receptor to become aggregation-prone. Here we show that these molecular chaperones recognize a region of the AR N-terminal domain (NTD), including a FQNLF motif, that interacts with the AR ligand-binding domain (LBD) upon activation. This suggests that competition between molecular chaperones and the LBD for the FQNLF motif regulates AR activation. We also show that, while the free NTD oligomerizes, binding to Hsp70 increases its solubility. Stabilizing the NTD-Hsp70 interaction with small molecules reduces AR aggregation and promotes its degradation in cellular and mouse models of the neuromuscular disorder spinal bulbar muscular atrophy. These results help resolve the mechanisms by which molecular chaperones regulate the balance between AR aggregation, activation and quality control
The histone chaperones Vps75 and Nap1 form ring-like, tetrameric structures in solution
NAP-1 fold histone chaperones play an important role in escorting histones to and from sites of nucleosome assembly and disassembly. The two NAP-1 fold histone chaperones in budding yeast, Vps75 and Nap1, have previously been crystalized in a characteristic homodimeric conformation. In this study, a combination of small angle X-ray scattering, multi angle light scattering and pulsed electron–electron double resonance approaches were used to show that both Vps75 and Nap1 adopt ring-shaped tetrameric conformations in solution. This suggests that the formation of homotetramers is a common feature of NAP-1 fold histone chaperones. The tetramerisation of NAP-1 fold histone chaperones may act to shield acidic surfaces in the absence of histone cargo thus providing a ‘self-chaperoning’ type mechanism
Directed motion emerging from two coupled random processes: Translocation of a chain through a membrane nanopore driven by binding proteins
We investigate the translocation of a stiff polymer consisting of M monomers
through a nanopore in a membrane, in the presence of binding particles
(chaperones) that bind onto the polymer, and partially prevent backsliding of
the polymer through the pore. The process is characterized by the rates: k for
the polymer to make a diffusive jump through the pore, q for unbinding of a
chaperone, and the rate q kappa for binding (with a binding strength kappa);
except for the case of no binding kappa=0 the presence of the chaperones give
rise to an effective force that drives the translocation process. Based on a
(2+1) variate master equation, we study in detail the coupled dynamics of
diffusive translocation and (partial) rectification by the binding proteins. In
particular, we calculate the mean translocation time as a function of the
various physical parameters.Comment: 22 pages, 5 figures, IOP styl
The Chlamydia trachomatis Type III Secretion Chaperone Slc1 Engages Multiple Early Effectors, Including TepP, a Tyrosine-phosphorylated Protein Required for the Recruitment of CrkI-II to Nascent Inclusions and Innate Immune Signaling
Chlamydia trachomatis, the causative agent of trachoma and sexually transmitted infections, employs a type III secretion (T3S) system to deliver effector proteins into host epithelial cells to establish a replicative vacuole. Aside from the phosphoprotein TARP, a Chlamydia effector that promotes actin re-arrangements, very few factors mediating bacterial entry and early inclusion establishment have been characterized. Like many T3S effectors, TARP requires a chaperone (Slc1) for efficient translocation into host cells. In this study, we defined proteins that associate with Slc1 in invasive C. trachomatis elementary bodies (EB) by immunoprecipitation coupled with mass spectrometry. We identified Ct875, a new Slc1 client protein and T3S effector, which we renamed TepP (Translocated early phosphoprotein). We provide evidence that T3S effectors form large molecular weight complexes with Scl1 in vitro and that Slc1 enhances their T3S-dependent secretion in a heterologous Yersinia T3S system. We demonstrate that TepP is translocated early during bacterial entry into epithelial cells and is phosphorylated at tyrosine residues by host kinases. However, TepP phosphorylation occurs later than TARP, which together with the finding that Slc1 preferentially engages TARP in EBs leads us to postulate that these effectors are translocated into the host cell at different stages during C.trachomatis invasion. TepP co-immunoprecipitated with the scaffolding proteins CrkI-II during infection and Crk was recruited to EBs at entry sites where it remained associated with nascent inclusions. Importantly, C. trachomatis mutants lacking TepP failed to recruit CrkI-II to inclusions, providing genetic confirmation of a direct role for this effector in the recruitment of a host factor. Finally, endocervical epithelial cells infected with a tepP mutant showed altered expression of a subset of genes associated with innate immune responses. We propose a model wherein TepP acts downstream of TARP to recruit scaffolding proteins at entry sites to initiate and amplify signaling cascades important for the regulation of innate immune responses to Chlamydia.Fil: Chen, Yi-Shan. University of Duke; Estados UnidosFil: Bastidas, Robert J.. University of Duke; Estados UnidosFil: Saka, Hector Alex. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. University of Duke; Estados UnidosFil: Carpenter, Victoria K.. Duke University Medical Center; . University of Duke; Estados UnidosFil: Richards, Kristian L.. Miami University; Estados UnidosFil: Plano, Gregory V.. Miami University; Estados UnidosFil: Valdivia, Raphael H.. University of Duke; Estados Unido
- …
