18,455 research outputs found

    The Role of Chaos in One-Dimensional Heat Conductivity

    Full text link
    We investigate the heat conduction in a quasi 1-D gas model with various degree of chaos. Our calculations indicate that the heat conductivity κ\kappa is independent of system size when the chaos of the channel is strong enough. The different diffusion behaviors for the cases of chaotic and non-chaotic channels are also studied. The numerical results of divergent exponent α\alpha of heat conduction and diffusion exponent β\beta are in consistent with the formula α=22/β\alpha=2-2/\beta. We explore the temperature profiles numerically and analytically, which show that the temperature jump is primarily attributed to superdiffusion for both non-chaotic and chaotic cases, and for the latter case of superdiffusion the finite-size affects the value of β\beta remarkably.Comment: 6 pages, 7 figure

    Sound synchronization of bubble trains in a viscous fluid : Experiment and modeling

    Get PDF
    Acknowledgements: We thank the São Paulo State Agency FAPESP and the Federal Brazilian Agency CNPq for the financial support. M.S.B. acknowledges EPSRC Grant No. EP/IO32606/1.Peer reviewedPublisher PD

    Nonequilibrium many-body quantum dynamics: from full random matrices to real systems

    Full text link
    We present an overview of our studies on the nonequilibrium dynamics of quantum systems that have many interacting particles. Our emphasis is on systems that show strong level repulsion, referred to as chaotic systems. We discuss how full random matrices can guide and support our studies of realistic systems. We show that features of the dynamics can be anticipated from a detailed analysis of the spectrum and the structure of the initial state projected onto the energy eigenbasis. On the other way round, if we only have access to the dynamics, we can use it to infer the properties of the spectrum of the system. Our focus is on the survival probability, but results for other observables, such as the spin density imbalance and Shannon entropy are also mentioned.Comment: 14 pages, 7 figures, chapter for the book "Thermodynamics in the Quantum Regime - Recent Progress and Outlook

    Stability of the trapped nonconservative Gross-Pitaevskii equation with attractive two-body interaction

    Full text link
    The dynamics of a nonconservative Gross-Pitaevskii equation for trapped atomic systems with attractive two-body interaction is numerically investigated, considering wide variations of the nonconservative parameters, related to atomic feeding and dissipation. We study the possible limitations of the mean field description for an atomic condensate with attractive two-body interaction, by defining the parameter regions where stable or unstable formation can be found. The present study is useful and timely considering the possibility of large variations of attractive two-body scattering lengths, which may be feasible in recent experiments.Comment: 6 pages, 5 figures, submitted to Physical Review

    Kneadings, Symbolic Dynamics and Painting Lorenz Chaos. A Tutorial

    Full text link
    A new computational technique based on the symbolic description utilizing kneading invariants is proposed and verified for explorations of dynamical and parametric chaos in a few exemplary systems with the Lorenz attractor. The technique allows for uncovering the stunning complexity and universality of bi-parametric structures and detect their organizing centers - codimension-two T-points and separating saddles in the kneading-based scans of the iconic Lorenz equation from hydrodynamics, a normal model from mathematics, and a laser model from nonlinear optics.Comment: Journal of Bifurcations and Chaos, 201

    Chaotic dynamics in a storage-ring Free Electron Laser

    Full text link
    The temporal dynamics of a storage-ring Free Electron Laser is here investigated with particular attention to the case in which an external modulation is applied to the laser-electron beam detuning. The system is shown to produce bifurcations, multi-furcations as well as chaotic regimes. The peculiarities of this phenomenon with respect to the analogous behavior displayed by conventional laser sources are pointed out. Theoretical results, obtained by means of a phenomenological model reproducing the evolution of the main statistical parameters of the system, are shown to be in a good agreement with experiments carried out on the Super-ACO Free Electron Laser.Comment: submitted to Europ Phys. Journ.
    corecore