22,150 research outputs found

    Quantized open chaotic systems

    Full text link
    Two different "wave chaotic" systems, involving complex eigenvalues or resonances, can be analyzed using common semiclassical methods. In particular, one obtains fractal Weyl upper bounds for the density of resonances/eigenvalues near the real axis, and a classical dynamical criterion for a spectral gap.Comment: Proceedings of the conference QMath 11; QMath 11, Hradec Kralove : Czech Republic (2010

    Projective-anticipating, projective, and projective-lag synchronization of time-delayed chaotic systems on random networks

    Full text link
    We study projective-anticipating, projective, and projective-lag synchronization of time-delayed chaotic systems on random networks. We relax some limitations of previous work, where projective-anticipating and projective-lag synchronization can be achieved only on two coupled chaotic systems. In this paper, we can realize projective-anticipating and projective-lag synchronization on complex dynamical networks composed by a large number of interconnected components. At the same time, although previous work studied projective synchronization on complex dynamical networks, the dynamics of the nodes are coupled partially linear chaotic systems. In this paper, the dynamics of the nodes of the complex networks are time-delayed chaotic systems without the limitation of the partial-linearity. Based on the Lyapunov stability theory, we suggest a generic method to achieve the projective-anticipating, projective, and projective-lag synchronization of time-delayed chaotic systems on random dynamical networks and find both the existence and sufficient stability conditions. The validity of the proposed method is demonstrated and verified by examining specific examples using Ikeda and Mackey-Glass systems on Erdos-Renyi networks.Comment: 14 pages, 6 figure

    Spectral Statistics: From Disordered to Chaotic Systems

    Full text link
    The relation between disordered and chaotic systems is investigated. It is obtained by identifying the diffusion operator of the disordered systems with the Perron-Frobenius operator in the general case. This association enables us to extend results obtained in the diffusive regime to general chaotic systems. In particular, the two--point level density correlator and the structure factor for general chaotic systems are calculated and characterized. The behavior of the structure factor around the Heisenberg time is quantitatively described in terms of short periodic orbits.Comment: uuencoded file with 1 eps figure, 4 page

    Synchronization of fractional order chaotic systems

    Full text link
    The chaotic dynamics of fractional order systems begin to attract much attentions in recent years. In this brief report, we study the master-slave synchronization of fractional order chaotic systems. It is shown that fractional order chaotic systems can also be synchronized.Comment: 3 pages, 5 figure
    • …
    corecore