3 research outputs found

    Firing multistability in a locally active memristive neuron model

    Get PDF
    Funding Information: This work is supported by The Major Research Project of the National Natural Science Foundation of China (91964108), The National Natural Science Foundation of China (61971185), The Open Fund Project of Key Laboratory in Hunan Universities (18K010). Publisher Copyright: © 2020, Springer Nature B.V. Copyright: Copyright 2020 Elsevier B.V., All rights reserved.The theoretical, numerical and experimental demonstrations of firing dynamics in isolated neuron are of great significance for the understanding of neural function in human brain. In this paper, a new type of locally active and non-volatile memristor with three stable pinched hysteresis loops is presented. Then, a novel locally active memristive neuron model is established by using the locally active memristor as a connecting autapse, and both firing patterns and multistability in this neuronal system are investigated. We have confirmed that, on the one hand, the constructed neuron can generate multiple firing patterns like periodic bursting, periodic spiking, chaotic bursting, chaotic spiking, stochastic bursting, transient chaotic bursting and transient stochastic bursting. On the other hand, the phenomenon of firing multistability with coexisting four kinds of firing patterns can be observed via changing its initial states. It is worth noting that the proposed neuron exhibits such firing multistability previously unobserved in single neuron model. Finally, an electric neuron is designed and implemented, which is extremely useful for the practical scientific and engineering applications. The results captured from neuron hardware experiments match well with the theoretical and numerical simulation results.Peer reviewedFinal Accepted Versio

    Neural Bursting and Synchronization Emulated by Neural Networks and Circuits

    Get PDF
    © 2021 IEEE - All rights reserved. This is the accepted manuscript version of an article which has been published in final form at https://doi.org/10.1109/TCSI.2021.3081150Nowadays, research, modeling, simulation and realization of brain-like systems to reproduce brain behaviors have become urgent requirements. In this paper, neural bursting and synchronization are imitated by modeling two neural network models based on the Hopfield neural network (HNN). The first neural network model consists of four neurons, which correspond to realizing neural bursting firings. Theoretical analysis and numerical simulation show that the simple neural network can generate abundant bursting dynamics including multiple periodic bursting firings with different spikes per burst, multiple coexisting bursting firings, as well as multiple chaotic bursting firings with different amplitudes. The second neural network model simulates neural synchronization using a coupling neural network composed of two above small neural networks. The synchronization dynamics of the coupling neural network is theoretically proved based on the Lyapunov stability theory. Extensive simulation results show that the coupling neural network can produce different types of synchronous behaviors dependent on synaptic coupling strength, such as anti-phase bursting synchronization, anti-phase spiking synchronization, and complete bursting synchronization. Finally, two neural network circuits are designed and implemented to show the effectiveness and potential of the constructed neural networks.Peer reviewe

    A memristive non-smooth dynamical system with coexistence of bimodule periodic oscillation

    Get PDF
    © 2022 Elsevier GmbH. All rights reserved. This is the accepted manuscript version of an article which has been published in final form at https://doi.org/10.1016/j.aeue.2022.154279In order to explore the bursting oscillations and the formation mechanism of memristive non-smooth systems, a third-order memristor model and an external periodic excitation are introduced into a non-smooth dynamical system, and a novel 4D memristive non-smooth system with two-timescale is established. The system is divided into two different subsystems by a non-smooth interface, which can be used to simulate the scenario where a memristor encounters a non-smooth circuit in practical application circuits. Three different bursting patterns and bifurcation mechanisms are analyzed with the time series, the corresponding phase portraits, the equilibrium bifurcation diagrams, and the transformed phase portraits. It is pointed that not only the stability of the equilibrium trajectory but also the non-smooth interface may influence the bursting phenomenon, resulting in the sudden jumping of the trajectory and non-smooth bifurcation at the non-smooth interface. In particular, the coexistence of bimodule periodic oscillations at the non-smooth interface can be observed in this system. Finally, the correctness of the theoretical analysis is well verified by the numerical simulation and Multisim circuit simulation. This paper is of great significance for the future analysis and engineering application of the memristor in non-smooth circuits.Peer reviewe
    corecore