4,957 research outputs found

    Fractal Measures and Nonlinear Dynamics of Overcontact Binaries

    Get PDF
    Overcontact binary stars are systems of two stars where the component stars are in contact with each other. This implies that they share a common envelope of gas. In this work we seek signatures of nonlinearity and chaos in these stars by using time series analysis techniques. We use three main techniques, namely the correlation dimension,f (\alpha) spectrum and the bicoherence. The former two are calculated from the reconstructed dynamics, while the latter is calculated from the Fourier transforms of the time series of intensity variations(light curves) of these stars. Our dataset consists of data from 463 overcontact binary stars in the Kepler field of view [1]. Our analysis indicates nonlinearity and signatures of chaos in almost all the light curves. We also explore whether the underlying nonlinear properties of the stars are related to their physical properties like fill-out-factor, a measure of the extend of contact between the components of an overcontact binary system . We observe that significant correlations exist between the fill out factor and the nonlinear quantifiers. This correlation is more pronounced in specific subcategories constructed based on the mass ratios and effective temperatures of the binaries. The correlations observed can be indicative of variations in the nonlinear properties of the star as it ages. We believe that this study relating nonlinear and astrophysical properties of binary stars is the first of its kind and is an important starting point for such studies in other astrophysical objects displaying nonlinear dynamical behaviour.Comment: 17 pages, 12 figures, submitted to Communications in Nonlinear Science and Numerical Simulatio

    Revised research about chaotic dynamics in Manko et al. spacetime

    Full text link
    A recent work by Dubeibe et al. [Phys. Rev. D 75, 023008 (2007)] stated that chaos phenomenon of test particles in gravitational field of rotating neutron stars which are described by Manko, Sanabria-Gomez, and Manko (Manko et al.) metric can only occur when the stars have oblate deformation. But the chaotic motions they found are limited in a very narrow zone which is very close to the center of the massive bodies. This paper argues that this is impossible because the region is actually inside of the stars, so the motions cannot exist at this place. In this paper, we scan all parameters space and find chaos and unstable fixed points outside of stars with big mass-quadrupole moments. The calculations show that chaos can only occur when the stars have prolate deformation. Because real deformation of stars should be oblate, all orbits of test particles around the rotating neutron stars described by Manko et al. solutions are regular. The case of nonzero dipolar magnetic moment has also been taken into account in this study.Comment: 6 pages, 5 figure

    The chaotic solar cycle II. Analysis of cosmogenic 10Be data

    Full text link
    Context. The variations of solar activity over long time intervals using a solar activity reconstruction based on the cosmogenic radionuclide 10Be measured in polar ice cores are studied. Methods. By applying methods of nonlinear dynamics, the solar activity cycle is studied using solar activity proxies that have been reaching into the past for over 9300 years. The complexity of the system is expressed by several parameters of nonlinear dynamics, such as embedding dimension or false nearest neighbors, and the method of delay coordinates is applied to the time series. We also fit a damped random walk model, which accurately describes the variability of quasars, to the solar 10Be data and investigate the corresponding power spectral distribution. The periods in the data series were searched by the Fourier and wavelet analyses. The solar activity on the long-term scale is found to be on the edge of chaotic behavior. This can explain the observed intermittent period of longer lasting solar activity minima. Filtering the data by eliminating variations below a certain period (the periods of 380 yr and 57 yr were used) yields a far more regular behavior of solar activity. A comparison between the results for the 10Be data with the 14C data shows many similarities. Both cosmogenic isotopes are strongly correlated mutually and with solar activity. Finally, we find that a series of damped random walk models provides a good fit to the 10Be data with a fixed characteristic time scale of 1000 years, which is roughly consistent with the quasi-periods found by the Fourier and wavelet analyses.Comment: 8 pages, 11 figure

    Recurrence Plot Based Measures of Complexity and its Application to Heart Rate Variability Data

    Full text link
    The knowledge of transitions between regular, laminar or chaotic behavior is essential to understand the underlying mechanisms behind complex systems. While several linear approaches are often insufficient to describe such processes, there are several nonlinear methods which however require rather long time observations. To overcome these difficulties, we propose measures of complexity based on vertical structures in recurrence plots and apply them to the logistic map as well as to heart rate variability data. For the logistic map these measures enable us not only to detect transitions between chaotic and periodic states, but also to identify laminar states, i.e. chaos-chaos transitions. The traditional recurrence quantification analysis fails to detect the latter transitions. Applying our new measures to the heart rate variability data, we are able to detect and quantify the laminar phases before a life-threatening cardiac arrhythmia occurs thereby facilitating a prediction of such an event. Our findings could be of importance for the therapy of malignant cardiac arrhythmias
    • …
    corecore