759 research outputs found

    From Knowledge, Knowability and the Search for Objective Randomness to a New Vision of Complexity

    Full text link
    Herein we consider various concepts of entropy as measures of the complexity of phenomena and in so doing encounter a fundamental problem in physics that affects how we understand the nature of reality. In essence the difficulty has to do with our understanding of randomness, irreversibility and unpredictability using physical theory, and these in turn undermine our certainty regarding what we can and what we cannot know about complex phenomena in general. The sources of complexity examined herein appear to be channels for the amplification of naturally occurring randomness in the physical world. Our analysis suggests that when the conditions for the renormalization group apply, this spontaneous randomness, which is not a reflection of our limited knowledge, but a genuine property of nature, does not realize the conventional thermodynamic state, and a new condition, intermediate between the dynamic and the thermodynamic state, emerges. We argue that with this vision of complexity, life, which with ordinary statistical mechanics seems to be foreign to physics, becomes a natural consequence of dynamical processes.Comment: Phylosophica

    On the Nature of Models: The Unfinished Debate

    Get PDF
    Review: Ippoliti, Emiliano, Sterpetti, Fabio, Nickles Thomas : Models and Inferences in Science

    Complex aspects of gravity

    Full text link
    This paper presents reflections on the validity of a series of mathematical methods and technical assumptions that are encrusted in macrophysics (related to gravitational interaction), that seem to have little or no physical significance. It is interesting to inquire what a change can occur if one removes some of the traditional assumptions.Comment: 10 page

    Decoherence, einselection, and the quantum origins of the classical

    Full text link
    Decoherence is caused by the interaction with the environment. Environment monitors certain observables of the system, destroying interference between the pointer states corresponding to their eigenvalues. This leads to environment-induced superselection or einselection, a quantum process associated with selective loss of information. Einselected pointer states are stable. They can retain correlations with the rest of the Universe in spite of the environment. Einselection enforces classicality by imposing an effective ban on the vast majority of the Hilbert space, eliminating especially the flagrantly non-local "Schr\"odinger cat" states. Classical structure of phase space emerges from the quantum Hilbert space in the appropriate macroscopic limit: Combination of einselection with dynamics leads to the idealizations of a point and of a classical trajectory. In measurements, einselection replaces quantum entanglement between the apparatus and the measured system with the classical correlation.Comment: Final version of the review, with brutally compressed figures. Apart from the changes introduced in the editorial process the text is identical with that in the Rev. Mod. Phys. July issue. Also available from http://www.vjquantuminfo.or

    The role of data in model building and prediction: a survey through examples

    Get PDF
    The goal of Science is to understand phenomena and systems in order to predict their development and gain control over them. In the scientific process of knowledge elaboration, a crucial role is played by models which, in the language of quantitative sciences, mean abstract mathematical or algorithmical representations. This short review discusses a few key examples from Physics, taken from dynamical systems theory, biophysics, and statistical mechanics, representing three paradigmatic procedures to build models and predictions from available data. In the case of dynamical systems we show how predictions can be obtained in a virtually model-free framework using the methods of analogues, and we briefly discuss other approaches based on machine learning methods. In cases where the complexity of systems is challenging, like in biophysics, we stress the necessity to include part of the empirical knowledge in the models to gain the minimal amount of realism. Finally, we consider many body systems where many (temporal or spatial) scales are at play-and show how to derive from data a dimensional reduction in terms of a Langevin dynamics for their slow components

    Chaos beyond Order: Overcoming the Quest for Certainty and Conservation in Modern Western Sciences

    Get PDF
    Chaos theory not only stretched the concept of chaos well beyond its traditional semantic boundaries, but it also challenged fundamental tenets of physics and science in general. Hence, its present and potential impact on the Western worldview cannot be underestimated. I will illustrate the relevance of chaos theory in regard to modern Western thought by tracing the concept of order, which modern thinkers emphasised as chaos' dichotomic counterpart. In particular, I will underline how the concern of seventeenth-century natural philosophers with order and conservation oriented the production of their concept of nature. Moreover, I will match this resulting world of natural facts with both the classical construction of the cosmos, and the nineteenth-century physico-chemical structure of conservation laws. Furthermore, I will recall the challenges to the deterministic and determinable modern scientific framework. These challenges arose from within the hard sciences, and they were often understood as a temporary lack of knowledge. I will argue that scientists long failed to acknowledge results that were at odds with their expectations, which were deeply engrained in modern Western thought, and which even harked back to the classical theoretical framework. Finally, I will suggest a link between the cultural earthquake that shook Western societies during the ‘long sixties,' and the questioning of scientific expectations, which chaos theory defied
    corecore