2,467 research outputs found

    Survey and Systematization of Secure Device Pairing

    Full text link
    Secure Device Pairing (SDP) schemes have been developed to facilitate secure communications among smart devices, both personal mobile devices and Internet of Things (IoT) devices. Comparison and assessment of SDP schemes is troublesome, because each scheme makes different assumptions about out-of-band channels and adversary models, and are driven by their particular use-cases. A conceptual model that facilitates meaningful comparison among SDP schemes is missing. We provide such a model. In this article, we survey and analyze a wide range of SDP schemes that are described in the literature, including a number that have been adopted as standards. A system model and consistent terminology for SDP schemes are built on the foundation of this survey, which are then used to classify existing SDP schemes into a taxonomy that, for the first time, enables their meaningful comparison and analysis.The existing SDP schemes are analyzed using this model, revealing common systemic security weaknesses among the surveyed SDP schemes that should become priority areas for future SDP research, such as improving the integration of privacy requirements into the design of SDP schemes. Our results allow SDP scheme designers to create schemes that are more easily comparable with one another, and to assist the prevention of persisting the weaknesses common to the current generation of SDP schemes.Comment: 34 pages, 5 figures, 3 tables, accepted at IEEE Communications Surveys & Tutorials 2017 (Volume: PP, Issue: 99

    Selective Jamming of LoRaWAN using Commodity Hardware

    Full text link
    Long range, low power networks are rapidly gaining acceptance in the Internet of Things (IoT) due to their ability to economically support long-range sensing and control applications while providing multi-year battery life. LoRa is a key example of this new class of network and is being deployed at large scale in several countries worldwide. As these networks move out of the lab and into the real world, they expose a large cyber-physical attack surface. Securing these networks is therefore both critical and urgent. This paper highlights security issues in LoRa and LoRaWAN that arise due to the choice of a robust but slow modulation type in the protocol. We exploit these issues to develop a suite of practical attacks based around selective jamming. These attacks are conducted and evaluated using commodity hardware. The paper concludes by suggesting a range of countermeasures that can be used to mitigate the attacks.Comment: Mobiquitous 2017, November 7-10, 2017, Melbourne, VIC, Australi

    Ubiquitous Indoor Fine-Grained Positioning and Tracking: A Channel Response Perspective

    Full text link
    The future of location-aided applications is shaped by the ubiquity of Internet-of-Things devices. As an increasing amount of commercial off-the-shelf radio devices support channel response collection, it is possible to achieve fine-grained position estimation at a relatively low cost. In this paper, we focus on the channel response-based positioning and tracking for various applications. We first give an overview of the state of the art (SOTA) of channel response-enabled localization, which is further classified into two categories, i.e., device-based and contact-free schemes. A taxonomy for these complementary approaches is provided concerning the involved techniques. Then, we present a micro-benchmark of channel response-based direct positioning and tracking for both device-based and contact-free schemes. Finally, some practical issues for real-world applications and future research opportunities are pointed out.Comment: 13th International Conference on Indoor Positioning and Indoor Navigatio

    Future Evolution of CSMA Protocols for the IEEE 802.11 Standard

    Full text link
    In this paper a candidate protocol to replace the prevalent CSMA/CA medium access control in Wireless Local Area Networks is presented. The proposed protocol can achieve higher throughput than CSMA/CA, while maintaining fairness, and without additional implementation complexity. Under certain circumstances, it is able to reach and maintain collision-free operation, even when the number of contenders is variable and potentially large. It is backward compatible, allowing for new and legacy stations to coexist without degrading one another's performance, a property that can make the adoption process by future versions of the standard smooth and inexpensive.Comment: This paper has been accepted in the Second IEEE ICC Workshop 2013 on Telecommunication Standards: From Research to Standard
    corecore