4,918 research outputs found

    Sequential Distributed Detection in Energy-Constrained Wireless Sensor Networks

    Full text link
    The recently proposed sequential distributed detector based on level-triggered sampling operates as simple as the decision fusion techniques and at the same time performs as well as the data fusion techniques. Hence, it is well suited for resource-constrained wireless sensor networks. However, in practical cases where sensors observe discrete-time signals, the random overshoot above or below the sampling thresholds considerably degrades the performance of the considered detector. We propose, for systems with stringent energy constraints, a novel approach to tackle this problem by encoding the overshoot into the time delay between the sampling time and the transmission time. Specifically, each sensor computes the local log-likelihood ratio (LLR) and samples it using level-triggered sampling. Then, it transmits a single pulse to the fusion center (FC) after a transmission delay that is proportional to the overshoot, as in pulse position modulation (PPM). The FC, upon receiving a bit decodes the corresponding overshoot and recovers the transmitted LLR value. It then updates the approximate global LLR and compares it with two threshold to either make a decision or to continue the sequential process. We analyze the asymptotic average detection delay performance of the proposed scheme. We then apply the proposed sequential scheme to target detection in wireless sensor networks under the four Swerling fluctuating target models. It is seen that the proposed sequential distributed detector offers significant performance advantage over conventional decision fusion techniques

    Decentralized Sequential Composite Hypothesis Test Based on One-Bit Communication

    Full text link
    This paper considers the sequential composite hypothesis test with multiple sensors. The sensors observe random samples in parallel and communicate with a fusion center, who makes the global decision based on the sensor inputs. On one hand, in the centralized scenario, where local samples are precisely transmitted to the fusion center, the generalized sequential likelihood ratio test (GSPRT) is shown to be asymptotically optimal in terms of the expected sample size as error rates tend to zero. On the other hand, for systems with limited power and bandwidth resources, decentralized solutions that only send a summary of local samples (we particularly focus on a one-bit communication protocol) to the fusion center is of great importance. To this end, we first consider a decentralized scheme where sensors send their one-bit quantized statistics every fixed period of time to the fusion center. We show that such a uniform sampling and quantization scheme is strictly suboptimal and its suboptimality can be quantified by the KL divergence of the distributions of the quantized statistics under both hypotheses. We then propose a decentralized GSPRT based on level-triggered sampling. That is, each sensor runs its own GSPRT repeatedly and reports its local decision to the fusion center asynchronously. We show that this scheme is asymptotically optimal as the local thresholds and global thresholds grow large at different rates. Lastly, two particular models and their associated applications are studied to compare the centralized and decentralized approaches. Numerical results are provided to demonstrate that the proposed level-triggered sampling based decentralized scheme aligns closely with the centralized scheme with substantially lower communication overhead, and significantly outperforms the uniform sampling and quantization based decentralized scheme.Comment: 39 page

    Event-Triggered Communication and Control of Networked Systems for Multi-Agent Consensus

    Full text link
    This article provides an introduction to event-triggered coordination for multi-agent average consensus. We provide a comprehensive account of the motivations behind the use of event-triggered strategies for consensus, the methods for algorithm synthesis, the technical challenges involved in establishing desirable properties of the resulting implementations, and their applications in distributed control. We pay special attention to the assumptions on the capabilities of the network agents and the resulting features of the algorithm execution, including the interconnection topology, the evaluation of triggers, and the role of imperfect information. The issues raised in our discussion transcend the specific consensus problem and are indeed characteristic of cooperative algorithms for networked systems that solve other coordination tasks. As our discussion progresses, we make these connections clear, highlighting general challenges and tools to address them widespread in the event-triggered control of networked systems

    Spectrum Sensing using Distributed Sequential Detection via Noisy Reporting MAC

    Full text link
    This paper considers cooperative spectrum sensing algorithms for Cognitive Radios which focus on reducing the number of samples to make a reliable detection. We develop an energy efficient detector with low detection delay using decentralized sequential hypothesis testing. Our algorithm at the Cognitive Radios employs an asynchronous transmission scheme which takes into account the noise at the fusion center. We start with a distributed algorithm, DualSPRT, in which Cognitive Radios sequentially collect the observations, make local decisions using SPRT (Sequential Probability Ratio Test) and send them to the fusion center. The fusion center sequentially processes these received local decisions corrupted by noise, using an SPRT-like procedure to arrive at a final decision. We theoretically analyse its probability of error and average detection delay. We also asymptotically study its performance. Even though DualSPRT performs asymptotically well, a modification at the fusion node provides more control over the design of the algorithm parameters which then performs better at the usual operating probabilities of error in Cognitive Radio systems. We also analyse the modified algorithm theoretically. Later we modify these algorithms to handle uncertainties in SNR and fading.Comment: 13 pages. 12 figures, submitted to journa

    Data Management in Industry 4.0: State of the Art and Open Challenges

    Full text link
    Information and communication technologies are permeating all aspects of industrial and manufacturing systems, expediting the generation of large volumes of industrial data. This article surveys the recent literature on data management as it applies to networked industrial environments and identifies several open research challenges for the future. As a first step, we extract important data properties (volume, variety, traffic, criticality) and identify the corresponding data enabling technologies of diverse fundamental industrial use cases, based on practical applications. Secondly, we provide a detailed outline of recent industrial architectural designs with respect to their data management philosophy (data presence, data coordination, data computation) and the extent of their distributiveness. Then, we conduct a holistic survey of the recent literature from which we derive a taxonomy of the latest advances on industrial data enabling technologies and data centric services, spanning all the way from the field level deep in the physical deployments, up to the cloud and applications level. Finally, motivated by the rich conclusions of this critical analysis, we identify interesting open challenges for future research. The concepts presented in this article thematically cover the largest part of the industrial automation pyramid layers. Our approach is multidisciplinary, as the selected publications were drawn from two fields; the communications, networking and computation field as well as the industrial, manufacturing and automation field. The article can help the readers to deeply understand how data management is currently applied in networked industrial environments, and select interesting open research opportunities to pursue

    Wireless Network Design for Control Systems: A Survey

    Full text link
    Wireless networked control systems (WNCS) are composed of spatially distributed sensors, actuators, and con- trollers communicating through wireless networks instead of conventional point-to-point wired connections. Due to their main benefits in the reduction of deployment and maintenance costs, large flexibility and possible enhancement of safety, WNCS are becoming a fundamental infrastructure technology for critical control systems in automotive electrical systems, avionics control systems, building management systems, and industrial automation systems. The main challenge in WNCS is to jointly design the communication and control systems considering their tight interaction to improve the control performance and the network lifetime. In this survey, we make an exhaustive review of the literature on wireless network design and optimization for WNCS. First, we discuss what we call the critical interactive variables including sampling period, message delay, message dropout, and network energy consumption. The mutual effects of these communication and control variables motivate their joint tuning. We discuss the effect of controllable wireless network parameters at all layers of the communication protocols on the probability distribution of these interactive variables. We also review the current wireless network standardization for WNCS and their corresponding methodology for adapting the network parameters. Moreover, we discuss the analysis and design of control systems taking into account the effect of the interactive variables on the control system performance. Finally, we present the state-of-the-art wireless network design and optimization for WNCS, while highlighting the tradeoff between the achievable performance and complexity of various approaches. We conclude the survey by highlighting major research issues and identifying future research directions.Comment: 37 pages, 17 figures, 4 table

    On Quasi-Isometry of Threshold-Based Sampling

    Full text link
    The problem of isometry for threshold-based sampling such as integrate-and-fire (IF) or send-on-delta (SOD) is addressed. While for uniform sampling the Parseval theorem provides isometry and makes the Euclidean metric canonical, there is no analogy for threshold-based sampling. The relaxation of the isometric postulate to quasi-isometry, however, allows the discovery of the underlying metric structure of threshold-based sampling. This paper characterizes this metric structure making Hermann Weyl's discrepancy measure canonical for threshold-based sampling.Comment: submitted to IEEE Transactions on Signal Processin

    Asymptotically Optimal Stochastic Encryption for Quantized Sequential Detection in the Presence of Eavesdroppers

    Full text link
    We consider sequential detection based on quantized data in the presence of eavesdropper. Stochastic encryption is employed as a counter measure that flips the quantization bits at each sensor according to certain probabilities, and the flipping probabilities are only known to the legitimate fusion center (LFC) but not the eavesdropping fusion center (EFC). As a result, the LFC employs the optimal sequential probability ratio test (SPRT) for sequential detection whereas the EFC employs a mismatched SPRT (MSPRT). We characterize the asymptotic performance of the MSPRT in terms of the expected sample size as a function of the vanishing error probabilities. We show that when the detection error probabilities are set to be the same at the LFC and EFC, every symmetric stochastic encryption is ineffective in the sense that it leads to the same expected sample size at the LFC and EFC. Next, in the asymptotic regime of small detection error probabilities, we show that every stochastic encryption degrades the performance of the quantized sequential detection at the LFC by increasing the expected sample size, and the expected sample size required at the EFC is no fewer than that is required at the LFC. Then the optimal stochastic encryption is investigated in the sense of maximizing the difference between the expected sample sizes required at the EFC and LFC. Although this optimization problem is nonconvex, we show that if the acceptable tolerance of the increase in the expected sample size at the LFC induced by the stochastic encryption is small enough, then the globally optimal stochastic encryption can be analytically obtained; and moreover, the optimal scheme only flips one type of quantized bits (i.e., 1 or 0) and keeps the other type unchanged

    ICT System Design & Implementation Using Wireless Sensors to Support Elderly In-home Assistance

    Full text link
    Around the globe the number of older people in relation to the rest is constantly growing. As a result, medical and care facilities cannot handle the growing number of patients. Therefore, elderly in-home assistance gets more attention an importance. Due to issues regarding memory, physical strength and reduced self-assessment, old people face a lot of challenges in accomplishing their activities of daily living. This thesis is meant to address these problems by analysing the required infrastructure of a home-care facility as well as the arising issues regarding used components, especially wireless sensors. After the analysis, a prototype of a home-care system is designed and implemented. Furthermore, the issue of energy consumption of the used wireless sensor node is addressed by modifying the intelligence of the used sensor. After that, the design and components of the prototype used for the energy consumption analysis is explained, together with the programming structure of the sensor nodes used in this thesis. Thereupon, the results are of the simulations are discussed and compared with the authors' expectations. Finally the overall outcomes of the thesis are analysed and summed up, followed by a short outlook of further possible improvements and developments

    Resilient Learning-Based Control for Synchronization of Passive Multi-Agent Systems under Attack

    Full text link
    In this paper, we show synchronization for a group of output passive agents that communicate with each other according to an underlying communication graph to achieve a common goal. We propose a distributed event-triggered control framework that will guarantee synchronization and considerably decrease the required communication load on the band-limited network. We define a general Byzantine attack on the event-triggered multi-agent network system and characterize its negative effects on synchronization. The Byzantine agents are capable of intelligently falsifying their data and manipulating the underlying communication graph by altering their respective control feedback weights. We introduce a decentralized detection framework and analyze its steady-state and transient performances. We propose a way of identifying individual Byzantine neighbors and a learning-based method of estimating the attack parameters. Lastly, we propose learning-based control approaches to mitigate the negative effects of the adversarial attack
    • …
    corecore