661 research outputs found

    Blind Receiver Design for OFDM Systems Over Doubly Selective Channels

    Get PDF
    We develop blind data detectors for orthogonal frequency-division multiplexing (OFDM) systems over doubly selective channels by exploiting both frequency-domain and time-domain correlations of the received signal. We thus derive two blind data detectors: a time-domain data detector and a frequency-domain data detector. We also contribute a reduced complexity, suboptimal version of a time-domain data detector that performs robustly when the normalized Doppler rate is less than 3%. Our frequency-domain data detector and suboptimal time-domain data detector both result in integer least-squares (LS) problems. We propose the use of the V-BLAST detector and the sphere decoder. The time-domain data detector is not limited to the Doppler rates less than 3%, but cannot be posed as an integer LS problem. Our solution is to develop an iterative algorithm that starts from the suboptimal time-domain data detector output. We also propose channel estimation and prediction algorithms using a polynomial expansion model, and these estimators work with data detectors (decision-directed mode) to reduce the complexity. The estimators for the channel statistics and the noise variance are derived using the likelihood function for the data. Our blind data detectors are fairly robust against the parameter mismatch

    Efficient space-frequency block coded pilot-aided channel estimation method for multiple-input-multiple-output orthogonal frequency division multiplexing systems over mobile frequency-selective fading channels

    Get PDF
    © 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.An iterative pilot-aided channel estimation technique for space-frequency block coded (SFBC) multiple-input multiple-output orthogonal frequency division multiplexing systems is proposed. Traditionally, when channel estimation techniques are utilised, the SFBC information signals are decoded one block at a time. In the proposed algorithm, multiple blocks of SFBC information signals are decoded simultaneously. The proposed channel estimation method can thus significantly reduce the amount of time required to decode information signals compared to similar channel estimation methods proposed in the literature. The proposed method is based on the maximum likelihood approach that offers linearity and simplicity of implementation. An expression for the pairwise error probability (PEP) is derived based on the estimated channel. The derived PEP is then used to determine the optimal power allocation for the pilot sequence. The performance of the proposed algorithm is demonstrated in high frequency selective channels, for different number of pilot symbols, using different modulation schemes. The algorithm is also tested under different levels of Doppler shift and for different number of transmit and receive antennas. The results show that the proposed scheme minimises the error margin between slow and high speed receivers compared to similar channel estimation methods in the literature.Peer reviewe

    FBMC system: an insight into doubly dispersive channel impact

    Get PDF
    It has been claimed that filter bank multicarrier (FBMC) systems suffer from negligible performance loss caused by moderate dispersive channels in the absence of guard time protection between symbols. However, a theoretical and systematic explanation/analysis for the statement is missing in the literature to date. In this paper, based on one-tap minimum mean square error (MMSE) and zero-forcing (ZF) channel equalizations, the impact of doubly dispersive channel on the performance of FBMC systems is analyzed in terms of mean square error of received symbols. Based on this analytical framework, we prove that the circular convolution property between symbols and the corresponding channel coefficients in the frequency domain holds loosely with a set of inaccuracies. To facilitate analysis, we first model the FBMC system in a vector/matrix form and derive the estimated symbols as a sum of desired signal, noise, intersymbol interference (ISI), intercarrier interference (ICI), interblock interference (IBI), and estimation bias in the MMSE equalizer. Those terms are derived one-by-one and expressed as a function of channel parameters. The numerical results reveal that under harsh channel conditions, e.g., with large Doppler spread or channel delay spread, the FBMC system performance may be severely deteriorated and error floor will occur
    • …
    corecore