369,701 research outputs found
State Leakage and Coordination of Actions: Core of the Receiver's Knowledge
We revisit the problems of state masking and state amplification through the
lens of empirical coordination by considering a state-dependent channel in
which the encoder has causal and strictly causal state knowledge. We show that
the problem of empirical coordination provides a natural framework in which to
jointly study the problems of reliable communication, state masking, and state
amplification. We characterize the regions of rate-equivocation-coordination
trade-offs for several channel models with causal and strictly causal state
knowledge. We introduce the notion of `core of the receiver's knowledge' to
capture what the decoder can infer about all the signals involved in the model.
We exploit this result to solve a channel state estimation zero-sum game in
which the encoder prevents the decoder to estimate the channel state
accurately.Comment: preliminary draf
Empirical and Strong Coordination via Soft Covering with Polar Codes
We design polar codes for empirical coordination and strong coordination in
two-node networks. Our constructions hinge on the fact that polar codes enable
explicit low-complexity schemes for soft covering. We leverage this property to
propose explicit and low-complexity coding schemes that achieve the capacity
regions of both empirical coordination and strong coordination for sequences of
actions taking value in an alphabet of prime cardinality. Our results improve
previously known polar coding schemes, which (i) were restricted to uniform
distributions and to actions obtained via binary symmetric channels for strong
coordination, (ii) required a non-negligible amount of common randomness for
empirical coordination, and (iii) assumed that the simulation of discrete
memoryless channels could be perfectly implemented. As a by-product of our
results, we obtain a polar coding scheme that achieves channel resolvability
for an arbitrary discrete memoryless channel whose input alphabet has prime
cardinality.Comment: 14 pages, two-column, 5 figures, accepted to IEEE Transactions on
Information Theor
Correlation between Channel State and Information Source with Empirical Coordination Constraint
Correlation between channel state and source symbol is under investigation
for a joint source-channel coding problem. We investigate simultaneously the
lossless transmission of information and the empirical coordination of channel
inputs with the symbols of source and states. Empirical coordination is
achievable if the sequences of source symbols, channel states, channel inputs
and channel outputs are jointly typical for a target joint probability
distribution. We characterize the joint distributions that are achievable under
lossless decoding constraint. The performance of the coordination is evaluated
by an objective function. For example, we determine the minimal distortion
between symbols of source and channel inputs for lossless decoding. We show
that the correlation source/channel state improves the feasibility of the
transmission.Comment: Conference IEEE ITW 201
Strong Coordination over Noisy Channels: Is Separation Sufficient?
We study the problem of strong coordination of actions of two agents and
that communicate over a noisy communication channel such that the actions
follow a given joint probability distribution. We propose two novel schemes for
this noisy strong coordination problem, and derive inner bounds for the
underlying strong coordination capacity region. The first scheme is a joint
coordination-channel coding scheme that utilizes the randomness provided by the
communication channel to reduce the local randomness required in generating the
action sequence at agent . The second scheme exploits separate coordination
and channel coding where local randomness is extracted from the channel after
decoding. Finally, we present an example in which the joint scheme is able to
outperform the separate scheme in terms of coordination rate.Comment: 9 pages, 4 figures. An extended version of a paper accepted for the
IEEE International Symposium on Information Theory (ISIT), 201
Strong Coordination over Noisy Channels: Is Separation Sufficient?
We study the problem of strong coordination of actions of two agents and
that communicate over a noisy communication channel such that the actions
follow a given joint probability distribution. We propose two novel schemes for
this noisy strong coordination problem, and derive inner bounds for the
underlying strong coordination capacity region. The first scheme is a joint
coordination-channel coding scheme that utilizes the randomness provided by the
communication channel to reduce the local randomness required in generating the
action sequence at agent . The second scheme exploits separate coordination
and channel coding where local randomness is extracted from the channel after
decoding. Finally, we present an example in which the joint scheme is able to
outperform the separate scheme in terms of coordination rate.Comment: 9 pages, 4 figures. An extended version of a paper accepted for the
IEEE International Symposium on Information Theory (ISIT), 201
On Achievable Rate Region of Multiple Coordinated Multiple Access Channels
Coordination between two or more multiple access channel (MAC) receivers can enlarge the achievable rate region of the whole system. This paper focuses on coordination by sharing the codebooks of the users between the receivers of MACs. We first define the achievable rate region of the time invariant multiple coordinated MAC (MCMAC) and subsequently derive its achievable rate region. We later express the achievable rate region in terms of the dominating points. We base our numerical analysis on the two-user two-receiver Gaussian coordinated MAC and make comparison with the interference channel, full cooperation and the individual MAC performance analysis. It is observed that this approach though suboptimal is less complex in comparison with full cooperation and that the MCMAC rate region is at least equal to the rate region of the uncoordinated approach. Over several channel states, the rate region of MCMAC exceeds that of the uncoordinated approach
Interference Coordination via Power Domain Channel Estimation
A novel technique is proposed which enables each transmitter to acquire
global channel state information (CSI) from the sole knowledge of individual
received signal power measurements, which makes dedicated feedback or
inter-transmitter signaling channels unnecessary. To make this possible, we
resort to a completely new technique whose key idea is to exploit the transmit
power levels as symbols to embed information and the observed interference as a
communication channel the transmitters can use to exchange coordination
information. Although the used technique allows any kind of {low-rate}
information to be exchanged among the transmitters, the focus here is to
exchange local CSI. The proposed procedure also comprises a phase which allows
local CSI to be estimated. Once an estimate of global CSI is acquired by the
transmitters, it can be used to optimize any utility function which depends on
it. While algorithms which use the same type of measurements such as the
iterative water-filling algorithm (IWFA) implement the sequential best-response
dynamics (BRD) applied to individual utilities, here, thanks to the
availability of global CSI, the BRD can be applied to the sum-utility.
Extensive numerical results show that significant gains can be obtained and,
this, by requiring no additional online signaling
Empirical Coordination with Two-Sided State Information and Correlated Source and State
The coordination of autonomous agents is a critical issue for decentralized
communication networks. Instead of transmitting information, the agents
interact in a coordinated manner in order to optimize a general objective
function. A target joint probability distribution is achievable if there exists
a code such that the sequences of symbols are jointly typical. The empirical
coordination is strongly related to the joint source-channel coding with
two-sided state information and correlated source and state. This problem is
also connected to state communication and is open for non-causal encoder and
decoder. We characterize the optimal solutions for perfect channel, for
lossless decoding, for independent source and channel, for causal encoding and
for causal decoding.Comment: 5 figures, 5 pages, presented at IEEE International Symposium on
Information Theory (ISIT) 201
The Coordination Channel of Foreign Exchange Intervention
If strong and persistent misalignments of the exchange rate are caused by non-fundamental influences, such that a return to equilibrium is hampered by a coordination failure among fundamentals-based traders, then central bank intervention may act as a coordinating signal, encouraging stabilizing speculators to re-enter the market at the same time. We develop this idea in the framework of a simple microstructural model of exchange rate movements, which we then estimate using daily data on the dollar-mark exchange rate and on Federal Reserve and Bundesbank intervention operations. The results are supportive of the existence of a coordination channel of intervention effectivenessforeign exchange intervention, market microstructure, nonlinear mean reversion
- …
