369,701 research outputs found

    State Leakage and Coordination of Actions: Core of the Receiver's Knowledge

    Full text link
    We revisit the problems of state masking and state amplification through the lens of empirical coordination by considering a state-dependent channel in which the encoder has causal and strictly causal state knowledge. We show that the problem of empirical coordination provides a natural framework in which to jointly study the problems of reliable communication, state masking, and state amplification. We characterize the regions of rate-equivocation-coordination trade-offs for several channel models with causal and strictly causal state knowledge. We introduce the notion of `core of the receiver's knowledge' to capture what the decoder can infer about all the signals involved in the model. We exploit this result to solve a channel state estimation zero-sum game in which the encoder prevents the decoder to estimate the channel state accurately.Comment: preliminary draf

    Empirical and Strong Coordination via Soft Covering with Polar Codes

    Full text link
    We design polar codes for empirical coordination and strong coordination in two-node networks. Our constructions hinge on the fact that polar codes enable explicit low-complexity schemes for soft covering. We leverage this property to propose explicit and low-complexity coding schemes that achieve the capacity regions of both empirical coordination and strong coordination for sequences of actions taking value in an alphabet of prime cardinality. Our results improve previously known polar coding schemes, which (i) were restricted to uniform distributions and to actions obtained via binary symmetric channels for strong coordination, (ii) required a non-negligible amount of common randomness for empirical coordination, and (iii) assumed that the simulation of discrete memoryless channels could be perfectly implemented. As a by-product of our results, we obtain a polar coding scheme that achieves channel resolvability for an arbitrary discrete memoryless channel whose input alphabet has prime cardinality.Comment: 14 pages, two-column, 5 figures, accepted to IEEE Transactions on Information Theor

    Correlation between Channel State and Information Source with Empirical Coordination Constraint

    Full text link
    Correlation between channel state and source symbol is under investigation for a joint source-channel coding problem. We investigate simultaneously the lossless transmission of information and the empirical coordination of channel inputs with the symbols of source and states. Empirical coordination is achievable if the sequences of source symbols, channel states, channel inputs and channel outputs are jointly typical for a target joint probability distribution. We characterize the joint distributions that are achievable under lossless decoding constraint. The performance of the coordination is evaluated by an objective function. For example, we determine the minimal distortion between symbols of source and channel inputs for lossless decoding. We show that the correlation source/channel state improves the feasibility of the transmission.Comment: Conference IEEE ITW 201

    Strong Coordination over Noisy Channels: Is Separation Sufficient?

    Full text link
    We study the problem of strong coordination of actions of two agents XX and YY that communicate over a noisy communication channel such that the actions follow a given joint probability distribution. We propose two novel schemes for this noisy strong coordination problem, and derive inner bounds for the underlying strong coordination capacity region. The first scheme is a joint coordination-channel coding scheme that utilizes the randomness provided by the communication channel to reduce the local randomness required in generating the action sequence at agent YY. The second scheme exploits separate coordination and channel coding where local randomness is extracted from the channel after decoding. Finally, we present an example in which the joint scheme is able to outperform the separate scheme in terms of coordination rate.Comment: 9 pages, 4 figures. An extended version of a paper accepted for the IEEE International Symposium on Information Theory (ISIT), 201

    Strong Coordination over Noisy Channels: Is Separation Sufficient?

    Full text link
    We study the problem of strong coordination of actions of two agents XX and YY that communicate over a noisy communication channel such that the actions follow a given joint probability distribution. We propose two novel schemes for this noisy strong coordination problem, and derive inner bounds for the underlying strong coordination capacity region. The first scheme is a joint coordination-channel coding scheme that utilizes the randomness provided by the communication channel to reduce the local randomness required in generating the action sequence at agent YY. The second scheme exploits separate coordination and channel coding where local randomness is extracted from the channel after decoding. Finally, we present an example in which the joint scheme is able to outperform the separate scheme in terms of coordination rate.Comment: 9 pages, 4 figures. An extended version of a paper accepted for the IEEE International Symposium on Information Theory (ISIT), 201

    On Achievable Rate Region of Multiple Coordinated Multiple Access Channels

    Get PDF
    Coordination between two or more multiple access channel (MAC) receivers can enlarge the achievable rate region of the whole system. This paper focuses on coordination by sharing the codebooks of the users between the receivers of MACs. We first define the achievable rate region of the time invariant multiple coordinated MAC (MCMAC) and subsequently derive its achievable rate region. We later express the achievable rate region in terms of the dominating points. We base our numerical analysis on the two-user two-receiver Gaussian coordinated MAC and make comparison with the interference channel, full cooperation and the individual MAC performance analysis. It is observed that this approach though suboptimal is less complex in comparison with full cooperation and that the MCMAC rate region is at least equal to the rate region of the uncoordinated approach. Over several channel states, the rate region of MCMAC exceeds that of the uncoordinated approach

    Interference Coordination via Power Domain Channel Estimation

    Full text link
    A novel technique is proposed which enables each transmitter to acquire global channel state information (CSI) from the sole knowledge of individual received signal power measurements, which makes dedicated feedback or inter-transmitter signaling channels unnecessary. To make this possible, we resort to a completely new technique whose key idea is to exploit the transmit power levels as symbols to embed information and the observed interference as a communication channel the transmitters can use to exchange coordination information. Although the used technique allows any kind of {low-rate} information to be exchanged among the transmitters, the focus here is to exchange local CSI. The proposed procedure also comprises a phase which allows local CSI to be estimated. Once an estimate of global CSI is acquired by the transmitters, it can be used to optimize any utility function which depends on it. While algorithms which use the same type of measurements such as the iterative water-filling algorithm (IWFA) implement the sequential best-response dynamics (BRD) applied to individual utilities, here, thanks to the availability of global CSI, the BRD can be applied to the sum-utility. Extensive numerical results show that significant gains can be obtained and, this, by requiring no additional online signaling

    Empirical Coordination with Two-Sided State Information and Correlated Source and State

    Full text link
    The coordination of autonomous agents is a critical issue for decentralized communication networks. Instead of transmitting information, the agents interact in a coordinated manner in order to optimize a general objective function. A target joint probability distribution is achievable if there exists a code such that the sequences of symbols are jointly typical. The empirical coordination is strongly related to the joint source-channel coding with two-sided state information and correlated source and state. This problem is also connected to state communication and is open for non-causal encoder and decoder. We characterize the optimal solutions for perfect channel, for lossless decoding, for independent source and channel, for causal encoding and for causal decoding.Comment: 5 figures, 5 pages, presented at IEEE International Symposium on Information Theory (ISIT) 201

    The Coordination Channel of Foreign Exchange Intervention

    Get PDF
    If strong and persistent misalignments of the exchange rate are caused by non-fundamental influences, such that a return to equilibrium is hampered by a coordination failure among fundamentals-based traders, then central bank intervention may act as a coordinating signal, encouraging stabilizing speculators to re-enter the market at the same time. We develop this idea in the framework of a simple microstructural model of exchange rate movements, which we then estimate using daily data on the dollar-mark exchange rate and on Federal Reserve and Bundesbank intervention operations. The results are supportive of the existence of a coordination channel of intervention effectivenessforeign exchange intervention, market microstructure, nonlinear mean reversion
    corecore