2,345 research outputs found

    Distributed Algorithms for Learning and Cognitive Medium Access with Logarithmic Regret

    Get PDF
    The problem of distributed learning and channel access is considered in a cognitive network with multiple secondary users. The availability statistics of the channels are initially unknown to the secondary users and are estimated using sensing decisions. There is no explicit information exchange or prior agreement among the secondary users. We propose policies for distributed learning and access which achieve order-optimal cognitive system throughput (number of successful secondary transmissions) under self play, i.e., when implemented at all the secondary users. Equivalently, our policies minimize the regret in distributed learning and access. We first consider the scenario when the number of secondary users is known to the policy, and prove that the total regret is logarithmic in the number of transmission slots. Our distributed learning and access policy achieves order-optimal regret by comparing to an asymptotic lower bound for regret under any uniformly-good learning and access policy. We then consider the case when the number of secondary users is fixed but unknown, and is estimated through feedback. We propose a policy in this scenario whose asymptotic sum regret which grows slightly faster than logarithmic in the number of transmission slots.Comment: Submitted to IEEE JSAC on Advances in Cognitive Radio Networking and Communications, Dec. 2009, Revised May 201

    Joint Channel Selection and Power Control in Infrastructureless Wireless Networks: A Multi-Player Multi-Armed Bandit Framework

    Full text link
    This paper deals with the problem of efficient resource allocation in dynamic infrastructureless wireless networks. Assuming a reactive interference-limited scenario, each transmitter is allowed to select one frequency channel (from a common pool) together with a power level at each transmission trial; hence, for all transmitters, not only the fading gain, but also the number of interfering transmissions and their transmit powers are varying over time. Due to the absence of a central controller and time-varying network characteristics, it is highly inefficient for transmitters to acquire global channel and network knowledge. Therefore a reasonable assumption is that transmitters have no knowledge of fading gains, interference, and network topology. Each transmitting node selfishly aims at maximizing its average reward (or minimizing its average cost), which is a function of the action of that specific transmitter as well as those of all other transmitters. This scenario is modeled as a multi-player multi-armed adversarial bandit game, in which multiple players receive an a priori unknown reward with an arbitrarily time-varying distribution by sequentially pulling an arm, selected from a known and finite set of arms. Since players do not know the arm with the highest average reward in advance, they attempt to minimize their so-called regret, determined by the set of players' actions, while attempting to achieve equilibrium in some sense. To this end, we design in this paper two joint power level and channel selection strategies. We prove that the gap between the average reward achieved by our approaches and that based on the best fixed strategy converges to zero asymptotically. Moreover, the empirical joint frequencies of the game converge to the set of correlated equilibria. We further characterize this set for two special cases of our designed game
    • …
    corecore