56 research outputs found

    Signal Detection in Ambient Backscatter Systems: Fundamentals, Methods, and Trends

    Full text link
    Internet-of-Things (IoT) is rapidly growing in wireless technology, aiming to connect vast numbers of devices to gather and distribute vital information. Despite individual devices having low energy consumption, the cumulative demand results in significant energy usage. Consequently, the concept of ultra-low-power tags gains appeal. Such tags communicate by reflecting rather than generating the radio frequency (RF) signals by themselves. Thus, these backscatter tags can be low-cost and battery-free. The RF signals can be ambient sources such as wireless-fidelity (Wi-Fi), cellular, or television (TV) signals, or the system can generate them externally. Backscatter channel characteristics are different from conventional point-to-point or cooperative relay channels. These systems are also affected by a strong interference link between the RF source and the tag besides the direct and backscattering links, making signal detection challenging. This paper provides an overview of the fundamentals, challenges, and ongoing research in signal detection for AmBC networks. It delves into various detection methods, discussing their advantages and drawbacks. The paper's emphasis on signal detection sets it apart and positions it as a valuable resource for IoT and wireless communication professionals and researchers.Comment: Accepted for publication in the IEEE Acces

    GPS Anomaly Detection And Machine Learning Models For Precise Unmanned Aerial Systems

    Get PDF
    The rapid development and deployment of 5G/6G networks have brought numerous benefits such as faster speeds, enhanced capacity, improved reliability, lower latency, greater network efficiency, and enablement of new applications. Emerging applications of 5G impacting billions of devices and embedded electronics also pose cyber security vulnerabilities. This thesis focuses on the development of Global Positioning Systems (GPS) Based Anomaly Detection and corresponding algorithms for Unmanned Aerial Systems (UAS). Chapter 1 provides an overview of the thesis background and its objectives. Chapter 2 presents an overview of the 5G architectures, their advantages, and potential cyber threat types. Chapter 3 addresses the issue of GPS dropouts by taking the use case of the Dallas-Fort Worth (DFW) airport. By analyzing data from surveillance drones in the (DFW) area, its message frequency, and statistics on time differences between GPS messages were examined. Chapter 4 focuses on modeling and detecting false data injection (FDI) on GPS. Specifically, three scenarios, including Gaussian noise injection, data duplication, data manipulation are modeled. Further, multiple detection schemes that are Clustering-based and reinforcement learning techniques are deployed and detection accuracy were investigated. Chapter 5 shows the results of Chapters 3 and 4. Overall, this research provides a categorization and possible outlier detection to minimize the GPS interference for UAS enhancing the security and reliability of UAS operations

    Proceedings of the 35th WIC Symposium on Information Theory in the Benelux and the 4th joint WIC/IEEE Symposium on Information Theory and Signal Processing in the Benelux, Eindhoven, the Netherlands May 12-13, 2014

    Get PDF
    Compressive sensing (CS) as an approach for data acquisition has recently received much attention. In CS, the signal recovery problem from the observed data requires the solution of a sparse vector from an underdetermined system of equations. The underlying sparse signal recovery problem is quite general with many applications and is the focus of this talk. The main emphasis will be on Bayesian approaches for sparse signal recovery. We will examine sparse priors such as the super-Gaussian and student-t priors and appropriate MAP estimation methods. In particular, re-weighted l2 and re-weighted l1 methods developed to solve the optimization problem will be discussed. The talk will also examine a hierarchical Bayesian framework and then study in detail an empirical Bayesian method, the Sparse Bayesian Learning (SBL) method. If time permits, we will also discuss Bayesian methods for sparse recovery problems with structure; Intra-vector correlation in the context of the block sparse model and inter-vector correlation in the context of the multiple measurement vector problem

    Proceedings of the 35th WIC Symposium on Information Theory in the Benelux and the 4th joint WIC/IEEE Symposium on Information Theory and Signal Processing in the Benelux, Eindhoven, the Netherlands May 12-13, 2014

    Get PDF
    Compressive sensing (CS) as an approach for data acquisition has recently received much attention. In CS, the signal recovery problem from the observed data requires the solution of a sparse vector from an underdetermined system of equations. The underlying sparse signal recovery problem is quite general with many applications and is the focus of this talk. The main emphasis will be on Bayesian approaches for sparse signal recovery. We will examine sparse priors such as the super-Gaussian and student-t priors and appropriate MAP estimation methods. In particular, re-weighted l2 and re-weighted l1 methods developed to solve the optimization problem will be discussed. The talk will also examine a hierarchical Bayesian framework and then study in detail an empirical Bayesian method, the Sparse Bayesian Learning (SBL) method. If time permits, we will also discuss Bayesian methods for sparse recovery problems with structure; Intra-vector correlation in the context of the block sparse model and inter-vector correlation in the context of the multiple measurement vector problem

    Artificial Intelligence and Dimensionality Reduction: Tools for Approaching Future Communications

    Get PDF
    ACKNOWLEDGMENT The authors would like to thank the Fraunhofer-Heinrich- Hertz-Institut for acquiring and sharing the data associated to the rooftop and auditorium communication scenarios, the NextG Channel Model Alliance for creating a space to share public databases of propagation measurements, José Francisco Cortés-Gómez for the graphical support, Carmelo García-García for his help in the measurements acquisition, and Sohrab Vafa, Pablo Padilla and Francisco Luna-Valero for their valuable comments.This article presents a novel application of the t-distributed Stochastic Neighbor Embedding (t-SNE) clustering algorithm to the telecommunication field. t-SNE is a dimensionality reduction algorithm that allows the visualization of large dataset into a 2D plot. We present the applicability of this algorithm in a communication channel dataset formed by several scenarios (anechoic, reverberation, indoor and outdoor), and by using six channel features. Applying this artificial intelligence (AI) technique, we are able to separate different environments into several clusters allowing a clear visualization of the scenarios. Throughout the article, it is proved that t-SNE has the ability to cluster into several subclasses, obtaining internal classifications within the scenarios themselves. t-SNE comparison with different dimensionality reduction techniques (PCA, Isomap) is also provided throughout the paper. Furthermore, post-processing techniques are used to modify communication scenarios, recreating a real communication scenario from measurements acquired in an anechoic chamber. The dimensionality reduction and classification by using t-SNE and Variational AutoEncoders show good performance distinguishing between the recreation and the real communication scenario. The combination of these two techniques opens up the possibility for new scenario recreations for future mobile communications. This work shows the potential of AI as a powerful tool for clustering, classification and generation of new 5G propagation scenarios.Spanish Program of Research, Development, and Innovation under Project RTI2018-102002-A-I00Junta de Andalucía under Project B-TIC-402-UGR18 and Project P18.RT.4830Ministerio de Universidades, Gobierno de España under Predoctoral Grant FPU19/0125
    • …
    corecore