3,686 research outputs found

    Channel Estimation for Time-Varying MIMO Relay Systems

    Get PDF
    In this paper, we investigate the channel estimation problem for multiple-input multiple-output (MIMO) relay communication systems with time-varying channels. The time-varying characteristic of the channels is described by the complexexponential basis expansion model (CE-BEM). We propose a superimposed channel training algorithm to estimate the individual first-hop and second-hop time-varying channel matrices for MIMO relay systems. In particular, the estimation of the secondhop time-varying channel matrix is performed by exploiting the superimposed training sequence at the relay node, while the first-hop time-varying channel matrix is estimated through the source node training sequence and the estimated second-hop channel. To improve the performance of channel estimation, we derive the optimal structure of the source and relay training sequences that minimize the mean-squared error (MSE) of channel estimation. We also optimize the relay amplification factor that governs the power allocation between the source and relay training sequences. Numerical simulations demonstrate that the proposed superimposed channel training algorithm for MIMO relay systems with time-varying channels outperforms the conventional two-stage channel estimation scheme

    Rate-Splitting Robustness in Multi-Pair Massive MIMO Relay Systems

    Get PDF
    Relay systems improve both coverage and system capacity. Toward this direction, a full-duplex (FD) technology, being able to boost the spectral efficiency by transmitting and receiving simultaneously on the same frequency and time resources, is envisaged to play a key role in future networks. However, its benefits come at the expense of self-interference (SI) from their own transmit signal. At the same time, massive multiple-input massive multiple-output systems, bringing unconventionally many antennas, emerge as a promising technology with huge degrees-of-freedom. To this end, this paper considers a multi-pair decode-and-forward FD relay channel, where the relay station is deployed with a large number of antennas. Moreover, the rate-splitting (RS) transmission has recently been shown to provide significant performance benefits in various multi-user scenarios with imperfect channel state information at the transmitter (CSIT). Engaging the RS approach, we employ the deterministic equivalent analysis to derive the corresponding sum-rates in the presence of interferences. Initially, numerical results demonstrate the robustness of RS in half-duplex (HD) systems, since the achievable sum-rate increases without bound, i.e., it does not saturate at high signal-to-noise ratio. Next, we tackle the detrimental effect of SI in FD. In particular, and most importantly, not only FD outperforms HD, but also RS enables increasing the range of SI over which FD outperforms HD. Furthermore, increasing the number of relay station antennas, RS appears to be more efficacious due to imperfect CSIT, since SI decreases. Interestingly, increasing the number of users, the efficiency of RS worsens and its implementation becomes less favorable under these conditions. Finally, we verify that the proposed DEs, being accurate for a large number of relay station antennas, are tight approximations even for realistic system dimensions.Peer reviewedFinal Accepted Versio
    • …
    corecore