1,077 research outputs found

    On Time-Variant Distortions in Multicarrier Transmission with Application to Frequency Offsets and Phase Noise

    Full text link
    Phase noise and frequency offsets are due to their time-variant behavior one of the most limiting disturbances in practical OFDM designs and therefore intensively studied by many authors. In this paper we present a generalized framework for the prediction of uncoded system performance in the presence of time-variant distortions including the transmitter and receiver pulse shapes as well as the channel. Therefore, unlike existing studies, our approach can be employed for more general multicarrier schemes. To show the usefulness of our approach, we apply the results to OFDM in the context of frequency offset and Wiener phase noise, yielding improved bounds on the uncoded performance. In particular, we obtain exact formulas for the averaged performance in AWGN and time-invariant multipath channels.Comment: 10 pages (twocolumn), 5 figure

    Waveform Design for 5G and Beyond

    Get PDF
    5G is envisioned to improve major key performance indicators (KPIs), such as peak data rate, spectral efficiency, power consumption, complexity, connection density, latency, and mobility. This chapter aims to provide a complete picture of the ongoing 5G waveform discussions and overviews the major candidates. It provides a brief description of the waveform and reveals the 5G use cases and waveform design requirements. The chapter presents the main features of cyclic prefix-orthogonal frequency-division multiplexing (CP-OFDM) that is deployed in 4G LTE systems. CP-OFDM is the baseline of the 5G waveform discussions since the performance of a new waveform is usually compared with it. The chapter examines the essential characteristics of the major waveform candidates along with the related advantages and disadvantages. It summarizes and compares the key features of different waveforms.Comment: 22 pages, 21 figures, 2 tables; accepted version (The URL for the final version: https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119333142.ch2

    Frequency-domain precoding for single carrier frequency-division multiple access

    Get PDF

    Decision Directed Channel Estimation Aided OFDM Employing Sample-Spaced and Fractionally-Spaced CIR Estimators

    No full text
    Abstract—In this letter we characterize the substantial difference between two channel estimation approaches, namely the sample-spaced (SS) and the fractionally-spaced (FS) channel impulse response (CIR) estimators. The achievable performance of decision-directed channel estimation (DDCE) methods employing both the SS- and the FS-CIR estimators is analyzed in the context of an OFDM system. The performance of the two estimation methods is compared and it is shown that the DDCE scheme employing the Projection Approximation Subspace Tracking (PAST)-aided FS-CIR estimator outperforms its SS-CIR estimator-based counterpart. Index Terms—Multiuser OFDM, decision directed channel estimation, impulse response estimation SDMA

    MIMO-UFMC Transceiver Schemes for Millimeter Wave Wireless Communications

    Full text link
    The UFMC modulation is among the most considered solutions for the realization of beyond-OFDM air interfaces for future wireless networks. This paper focuses on the design and analysis of an UFMC transceiver equipped with multiple antennas and operating at millimeter wave carrier frequencies. The paper provides the full mathematical model of a MIMO-UFMC transceiver, taking into account the presence of hybrid analog/digital beamformers at both ends of the communication links. Then, several detection structures are proposed, both for the case of single-packet isolated transmission, and for the case of multiple-packet continuous transmission. In the latter situation, the paper also considers the case in which no guard time among adjacent packets is inserted, trading off an increased level of interference with higher values of spectral efficiency. At the analysis stage, the several considered detection structures and transmission schemes are compared in terms of bit-error-rate, root-mean-square-error, and system throughput. The numerical results show that the proposed transceiver algorithms are effective and that the linear MMSE data detector is capable of well managing the increased interference brought by the removal of guard times among consecutive packets, thus yielding throughput gains of about 10 - 13 %\%. The effect of phase noise at the receiver is also numerically assessed, and it is shown that the recursive implementation of the linear MMSE exhibits some degree of robustness against this disturbance
    • …
    corecore