714,587 research outputs found

    Compressive sensing based Bayesian sparse channel estimation for OFDM communication systems: high performance and low complexity

    Get PDF
    In orthogonal frequency division modulation (OFDM) communication systems, channel state information (CSI) is required at receiver due to the fact that frequency-selective fading channel leads to disgusting inter-symbol interference (ISI) over data transmission. Broadband channel model is often described by very few dominant channel taps and they can be probed by compressive sensing based sparse channel estimation (SCE) methods, e.g., orthogonal matching pursuit algorithm, which can take the advantage of sparse structure effectively in the channel as for prior information. However, these developed methods are vulnerable to both noise interference and column coherence of training signal matrix. In other words, the primary objective of these conventional methods is to catch the dominant channel taps without a report of posterior channel uncertainty. To improve the estimation performance, we proposed a compressive sensing based Bayesian sparse channel estimation (BSCE) method which can not only exploit the channel sparsity but also mitigate the unexpected channel uncertainty without scarifying any computational complexity. The propose method can reveal potential ambiguity among multiple channel estimators that are ambiguous due to observation noise or correlation interference among columns in the training matrix. Computer simulations show that propose method can improve the estimation performance when comparing with conventional SCE methods.Comment: 24 pages,16 figures, submitted for a journa

    Enhanced Estimation of a Noisy Quantum Channel Using Entanglement

    Get PDF
    We discuss the estimation of channel parameters for a noisy quantum channel - the so-called Pauli channel - using finite resources. It turns out that prior entanglement considerably enhances the fidelity of the estimation when we compare it to an estimation scheme based on separable quantum states.Comment: 4 pages, 2 figure

    Performance of adaptive bayesian equalizers in outdoor environments

    Get PDF
    Outdoor communications are affected by multipath propagation that imposes an upper limit on the system data rate and restricts possible applications. In order to overcome the degrading effect introduced by the channel, conventional equalizers implemented with digital filters have been traditionally used. A new approach based on neural networks is considered. In particular, the behavior of the adaptive Bayesian equalizer implemented by means of radial basis functions applied to the channel equalization of radio outdoor environments has been analyzed. The method used to train the equalizer coefficients is based on a channel response estimation. We compare the results obtained with three channel estimation methods: the least sum of square errors (LSSE) channel estimation algorithm, recursive least square (RLS) algorithm employed only to obtain one channel estimation and, finally, the RLS algorithm used to estimate the channel every decided symbol for the whole frame.Peer ReviewedPostprint (published version
    corecore