57,513 research outputs found
Optimal Energy Allocation for Kalman Filtering over Packet Dropping Links with Imperfect Acknowledgments and Energy Harvesting Constraints
This paper presents a design methodology for optimal transmission energy
allocation at a sensor equipped with energy harvesting technology for remote
state estimation of linear stochastic dynamical systems. In this framework, the
sensor measurements as noisy versions of the system states are sent to the
receiver over a packet dropping communication channel. The packet dropout
probabilities of the channel depend on both the sensor's transmission energies
and time varying wireless fading channel gains. The sensor has access to an
energy harvesting source which is an everlasting but unreliable energy source
compared to conventional batteries with fixed energy storages. The receiver
performs optimal state estimation with random packet dropouts to minimize the
estimation error covariances based on received measurements. The receiver also
sends packet receipt acknowledgments to the sensor via an erroneous feedback
communication channel which is itself packet dropping.
The objective is to design optimal transmission energy allocation at the
energy harvesting sensor to minimize either a finite-time horizon sum or a long
term average (infinite-time horizon) of the trace of the expected estimation
error covariance of the receiver's Kalman filter. These problems are formulated
as Markov decision processes with imperfect state information. The optimal
transmission energy allocation policies are obtained by the use of dynamic
programming techniques. Using the concept of submodularity, the structure of
the optimal transmission energy policies are studied. Suboptimal solutions are
also discussed which are far less computationally intensive than optimal
solutions. Numerical simulation results are presented illustrating the
performance of the energy allocation algorithms.Comment: Submitted to IEEE Transactions on Automatic Control. arXiv admin
note: text overlap with arXiv:1402.663
Sagnac loop in ring resonators for tunable optical filters
General filter architecture using co- and counterpropagation signals are studied. A specific configuration based on a Sagnac loop within a ring resonator is analyzed. Novel tuning, apart from conventional tuning, is achieved by changing the coupling ratio of a coupler through the adjustment of the equivalent loop length. Full equations describing the filter behavior in passive and active configurations, and simple closed-form formulas to compute the tuning, tolerance, and full-width at half-maximum are reported. The performance of these devices is discussed for their application as selective or channel-dropping ultra-narrow-band filters. The effect of losses and their dispersion properties are also discussed. These devices can be conveniently implemented, using silicon- or InP-integrated optic technology, for they have high free spectral ranges.Publicad
An Optimal Transmission Strategy for Kalman Filtering over Packet Dropping Links with Imperfect Acknowledgements
This paper presents a novel design methodology for optimal transmission
policies at a smart sensor to remotely estimate the state of a stable linear
stochastic dynamical system. The sensor makes measurements of the process and
forms estimates of the state using a local Kalman filter. The sensor transmits
quantized information over a packet dropping link to the remote receiver. The
receiver sends packet receipt acknowledgments back to the sensor via an
erroneous feedback communication channel which is itself packet dropping. The
key novelty of this formulation is that the smart sensor decides, at each
discrete time instant, whether to transmit a quantized version of either its
local state estimate or its local innovation. The objective is to design
optimal transmission policies in order to minimize a long term average cost
function as a convex combination of the receiver's expected estimation error
covariance and the energy needed to transmit the packets. The optimal
transmission policy is obtained by the use of dynamic programming techniques.
Using the concept of submodularity, the optimality of a threshold policy in the
case of scalar systems with perfect packet receipt acknowledgments is proved.
Suboptimal solutions and their structural results are also discussed. Numerical
results are presented illustrating the performance of the optimal and
suboptimal transmission policies.Comment: Conditionally accepted in IEEE Transactions on Control of Network
System
Optimal LQG Control Across a Packet-Dropping Link
We examine optimal Linear Quadratic Gaussian control for a system in which communication between the sensor (output of the plant) and the controller occurs across a packet-dropping link. We extend the familiar LQG separation principle to this problem that allows us to solve this problem using a standard LQR state-feedback design, along with an optimal algorithm for propagating and using the information across the unreliable link. We present one such optimal algorithm, which consists of a Kalman Filter at the sensor side of the link, and a switched linear filter at the controller side. Our design does not assume any statistical model of the packet drop events, and is thus optimal for an arbitrary packet drop pattern. Further, the solution is appealing from a practical point of view because it can be implemented as a small modification of an existing LQG control design
Kalman Filtering With Relays Over Wireless Fading Channels
This note studies the use of relays to improve the performance of Kalman
filtering over packet dropping links. Packet reception probabilities are
governed by time-varying fading channel gains, and the sensor and relay
transmit powers. We consider situations with multiple sensors and relays, where
each relay can either forward one of the sensors' measurements to the
gateway/fusion center, or perform a simple linear network coding operation on
some of the sensor measurements. Using an expected error covariance performance
measure, we consider optimal and suboptimal methods for finding the best relay
configuration, and power control problems for optimizing the Kalman filter
performance. Our methods show that significant performance gains can be
obtained through the use of relays, network coding and power control, with at
least 30-40 less power consumption for a given expected error covariance
specification.Comment: 7 page
Densely integrated microring resonator based photonic devices for use in access networks
Two reconfigurable optical add-drop multiplexers, operating in the second or third telecom window, as well as a 1x4x4 reconfigurable λ-router operating in the second telecom window, are demonstrated. The devices have a footprint less than 2 mm2 and are based on thermally tunable vertically coupled microring resonators fabricated in Si3N4/SiO2
Al-Robotics team: A cooperative multi-unmanned aerial vehicle approach for the Mohamed Bin Zayed International Robotic Challenge
The Al-Robotics team was selected as one of the 25 finalist teams out of 143 applications received to participate in the first edition of the Mohamed Bin Zayed International Robotic Challenge (MBZIRC), held in 2017. In particular, one of the competition Challenges offered us the opportunity to develop a cooperative approach with multiple unmanned aerial vehicles (UAVs) searching, picking up, and dropping static and moving objects. This paper presents the approach that our team Al-Robotics followed to address that Challenge 3 of the MBZIRC. First, we overview the overall architecture of the system, with the different modules involved. Second, we describe the procedure that we followed to design the aerial platforms, as well as all their onboard components. Then, we explain the techniques that we used to develop the software functionalities of the system. Finally, we discuss our experimental results and the lessons that we learned before and during the competition. The cooperative approach was validated with fully autonomous missions in experiments previous to the actual competition. We also analyze the results that we obtained during the competition trials.Unión Europea H2020 73166
Data Transmission Over Networks for Estimation and Control
We consider the problem of controlling a linear time invariant process when the controller is located at a location remote from where the sensor measurements are being generated. The communication from the sensor to the controller is supported by a communication network with arbitrary topology composed of analog erasure channels. Using a separation principle, we prove that the optimal linear-quadratic-Gaussian (LQG) controller consists of an LQ optimal regulator along with an estimator that estimates the state of the process across the communication network. We then determine the optimal information processing strategy that should be followed by each node in the network so that the estimator is able to compute the best possible estimate in the minimum mean squared error sense. The algorithm is optimal for any packet-dropping process and at every time step, even though it is recursive and hence requires a constant amount of memory, processing and transmission at every node in the network per time step. For the case when the packet drop processes are memoryless and independent across links, we analyze the stability properties and the performance of the closed loop system. The algorithm is an attempt to escape the viewpoint of treating a network of communication links as a single end-to-end link with the probability of successful transmission determined by some measure of the reliability of the network
MAC design for WiFi infrastructure networks: a game-theoretic approach
In WiFi networks, mobile nodes compete for accessing a shared channel by
means of a random access protocol called Distributed Coordination Function
(DCF). Although this protocol is in principle fair, since all the stations have
the same probability to transmit on the channel, it has been shown that unfair
behaviors may emerge in actual networking scenarios because of non-standard
configurations of the nodes. Due to the proliferation of open source drivers
and programmable cards, enabling an easy customization of the channel access
policies, we propose a game-theoretic analysis of random access schemes.
Assuming that each node is rational and implements a best response strategy, we
show that efficient equilibria conditions can be reached when stations are
interested in both uploading and downloading traffic. More interesting, these
equilibria are reached when all the stations play the same strategy, thus
guaranteeing a fair resource sharing. When stations are interested in upload
traffic only, we also propose a mechanism design, based on an artificial
dropping of layer-2 acknowledgments, to force desired equilibria. Finally, we
propose and evaluate some simple DCF extensions for practically implementing
our theoretical findings.Comment: under review on IEEE Transaction on wireless communication
- …
