1,111 research outputs found

    Photonic Crystal Ring Resonator Based Optical Filters

    Get PDF

    New Design of Channel Drop Filter by Triangular Photonic Crystal

    Get PDF
    We have designed a new type of optical channel drop filter (CDF) based on two dimensional triangular lattice photonic crystals. CDF operation is based on coupling to the photonic crystal waveguide. The proposed structure is optimized to work as a CDF. For obtaining the CDF characteristics and band structure of the filter, the finite difference time domain (FDTD) method and plane wave expansion (PWE) method are used respectively. Dropping efficiency at 1556nm and quality factor (Q) of our proposed structure are 100% and 260, respectively. The quantities of quality factor and transmission efficiency are suitable for optical applications. The overall size of the proposed add drop filter is 191.97µm2, which is smaller than the filters already reported and it is highly desirable for photonic integrated circuits (PICs).DOI:http://dx.doi.org/10.11591/ijece.v3i1.193

    Interleavers

    Get PDF
    The chapter describes principles, analysis, design, properties, and implementations of optical frequency (or wavelength) interleavers. The emphasis is on finite impulse response devices based on cascaded Mach-Zehnder-type filter elements with carefully designed coupling ratios, the so-called resonant couplers. Another important class that is discussed is the infinite impulse response type, based on e.g. Fabry-Perot, Gires-Tournois, or ring resonators

    Studies of advanced integrated nano-photonic devices in silicon

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2011.Cataloged from PDF version of thesis.Includes bibliographical references (p. 267-285).Electronic-photonic integrated circuits (EPICs) are a promising technology for overcoming bandwidth and power-consumption bottlenecks of traditional integrated circuits. Silicon is a good candidate for building such devices, due to its high-index contrast and low propagation loss at telecom wavelengths. The current thesis presents recent advances in demonstrating discrete components built in silicon-on-insulator (SOI) platforms, around 1550 nm, that can be used as building blocks for future EPIC systems. The first part of this thesis investigates electro-optic modulators based on one-dimensional photonic crystal microcavities, with femtojoule switching energies, as well as on-chip optical interconnects using the super-collimation effect in two-dimensional photonic crystals, both in hole- and rod-based configurations. The second part focuses on microring-based structures, demonstrating wide thermal tunability and hitless operation of single-ring filters, as well as three more advanced categories of devices suitable for wavelength-division multiplexing (WDM) applications. These are twenty-channel second-order tunable filterbanks (both in dual- and counter-propagating configurations), reconfigurable optical add-drop multiplexers (ROADMs) with telecom-grade specifications, and a dynamical slow light cell for delay lines and optical memory elements. All the devices demonstrated in this thesis can be integrated on the same chip. The small device footprints and the use of the SOI platform are ideal for integration with a standard CMOS process, enabling the fabrication of novel electronic-photonic integrated circuits. These new EPIC systems may one day play an important role in the scaling of current computing systems and taking advantage of the WDM capability to increase operational bandwidth, while keeping the power consumption at low levels.by Marcus Dahlem.Ph.D

    Optimization of DWDM Demultiplexer Using Regression Analysis

    Get PDF
    We propose a novel twelve-channel Dense Wavelength Division Multiplexing (DWDM) demultiplexer, using the two-dimensional photonic crystal (2D PC) with square resonant cavity (SRC) of ITU-T G.694.1 standard. The DWDM demultiplexer consists of an input waveguide, SRC, and output waveguide. The SRC in the proposed demultiplexer consists of square resonator and microcavity. The microcavity center rod radius (Rm) is proportional to refractive index. The refractive index property of the rods filters the wavelengths of odd and even channels. The proposed microcavity can filter twelve ITU-T G.694.1 standard wavelengths with 0.2 nm/25 GHz channel spacing between the wavelengths. From the simulation, we optimize the rod radius and wavelength with linear regression analysis. From the regression analysis, we can achieve 95% of accuracy with an average quality factor of 7890, the uniform spectral line-width of 0.2 nm, the transmission efficiency of 90%, crosstalk of −42 dB, and footprint of about 784 μm2
    corecore