13,867 research outputs found

    Block encryption of quantum messages

    Get PDF
    In modern cryptography, block encryption is a fundamental cryptographic primitive. However, it is impossible for block encryption to achieve the same security as one-time pad. Quantum mechanics has changed the modern cryptography, and lots of researches have shown that quantum cryptography can outperform the limitation of traditional cryptography. This article proposes a new constructive mode for private quantum encryption, named EHE\mathcal{EHE}, which is a very simple method to construct quantum encryption from classical primitive. Based on EHE\mathcal{EHE} mode, we construct a quantum block encryption (QBE) scheme from pseudorandom functions. If the pseudorandom functions are standard secure, our scheme is indistinguishable encryption under chosen plaintext attack. If the pseudorandom functions are permutation on the key space, our scheme can achieve perfect security. In our scheme, the key can be reused and the randomness cannot, so a 2n2n-bit key can be used in an exponential number of encryptions, where the randomness will be refreshed in each time of encryption. Thus 2n2n-bit key can perfectly encrypt O(n2n)O(n2^n) qubits, and the perfect secrecy would not be broken if the 2n2n-bit key is reused for only exponential times. Comparing with quantum one-time pad (QOTP), our scheme can be the same secure as QOTP, and the secret key can be reused (no matter whether the eavesdropping exists or not). Thus, the limitation of perfectly secure encryption (Shannon's theory) is broken in the quantum setting. Moreover, our scheme can be viewed as a positive answer to the open problem in quantum cryptography "how to unconditionally reuse or recycle the whole key of private-key quantum encryption". In order to physically implement the QBE scheme, we only need to implement two kinds of single-qubit gates (Pauli XX gate and Hadamard gate), so it is within reach of current quantum technology.Comment: 13 pages, 1 figure. Prior version appears in eprint.iacr.org(iacr/2017/1247). This version adds some analysis about multiple-message encryption, and modifies lots of contents. There are no changes about the fundamental result

    Quantum entanglement

    Get PDF
    All our former experience with application of quantum theory seems to say: {\it what is predicted by quantum formalism must occur in laboratory}. But the essence of quantum formalism - entanglement, recognized by Einstein, Podolsky, Rosen and Schr\"odinger - waited over 70 years to enter to laboratories as a new resource as real as energy. This holistic property of compound quantum systems, which involves nonclassical correlations between subsystems, is a potential for many quantum processes, including ``canonical'' ones: quantum cryptography, quantum teleportation and dense coding. However, it appeared that this new resource is very complex and difficult to detect. Being usually fragile to environment, it is robust against conceptual and mathematical tools, the task of which is to decipher its rich structure. This article reviews basic aspects of entanglement including its characterization, detection, distillation and quantifying. In particular, the authors discuss various manifestations of entanglement via Bell inequalities, entropic inequalities, entanglement witnesses, quantum cryptography and point out some interrelations. They also discuss a basic role of entanglement in quantum communication within distant labs paradigm and stress some peculiarities such as irreversibility of entanglement manipulations including its extremal form - bound entanglement phenomenon. A basic role of entanglement witnesses in detection of entanglement is emphasized.Comment: 110 pages, 3 figures, ReVTex4, Improved (slightly extended) presentation, updated references, minor changes, submitted to Rev. Mod. Phys

    Security of Quantum Key Distribution with Entangled Qutrits

    Get PDF
    The study of quantum cryptography and quantum non-locality have traditionnally been based on two-level quantum systems (qubits). In this paper we consider a generalisation of Ekert's cryptographic protocol [Ekert] where qubits are replaced by qutrits. The security of this protocol is related to non-locality, in analogy with Ekert's protocol. In order to study its robustness against the optimal individual attacks, we derive the information gained by a potential eavesdropper applying a cloning-based attack.Comment: 9 pages original version: july 2002, replaced in january 2003 (reason: minor changes

    Dense-Coding Attack on Three-Party Quantum Key Distribution Protocols

    Full text link
    Cryptanalysis is an important branch in the study of cryptography, including both the classical cryptography and the quantum one. In this paper we analyze the security of two three-party quantum key distribution protocols (QKDPs) proposed recently, and point out that they are susceptible to a simple and effective attack, i.e. the dense-coding attack. It is shown that the eavesdropper Eve can totally obtain the session key by sending entangled qubits as the fake signal to Alice and performing collective measurements after Alice's encoding. The attack process is just like a dense-coding communication between Eve and Alice, where a special measurement basis is employed. Furthermore, this attack does not introduce any errors to the transmitted information and consequently will not be discovered by Alice and Bob. The attack strategy is described in detail and a proof for its correctness is given. At last, the root of this insecurity and a possible way to improve these protocols are discussed.Comment: 6 pages, 3 figure

    Quantum relays and noise suppression using linear optics

    Full text link
    Probabilistic quantum non-demolition (QND) measurements can be performed using linear optics and post-selection. Here we show how QND devices of this kind can be used in a straightforward way to implement a quantum relay, which is capable of extending the range of a quantum cryptography system by suppressing the effects of detector noise. Unlike a quantum repeater, a quantum relay system does not require entanglement purification or the ability to store photons.Comment: minor changes; references adde
    • …
    corecore