16,783 research outputs found

    Filtered derivative with p-value method for multiple change-points detection

    Get PDF
    This paper deals with off-line detection of change points for time series of independent observations, when the number of change points is unknown. We propose a sequential analysis like method with linear time and memory complexity. Our method is based at first step, on Filtered Derivative method which detects the right change points but also false ones. We improve Filtered Derivative method by adding a second step in which we compute the p-values associated to each potential change points. Then we eliminate as false alarms the points which have p-value smaller than a given critical level. Next, our method is compared with the Penalized Least Square Criterion procedure on simulated data sets. Eventually, we apply Filtered Derivative with p-Value method to segmentation of heartbeat time series

    Heterogeneous Change Point Inference

    Full text link
    We propose HSMUCE (heterogeneous simultaneous multiscale change-point estimator) for the detection of multiple change-points of the signal in a heterogeneous gaussian regression model. A piecewise constant function is estimated by minimizing the number of change-points over the acceptance region of a multiscale test which locally adapts to changes in the variance. The multiscale test is a combination of local likelihood ratio tests which are properly calibrated by scale dependent critical values in order to keep a global nominal level alpha, even for finite samples. We show that HSMUCE controls the error of over- and underestimation of the number of change-points. To this end, new deviation bounds for F-type statistics are derived. Moreover, we obtain confidence sets for the whole signal. All results are non-asymptotic and uniform over a large class of heterogeneous change-point models. HSMUCE is fast to compute, achieves the optimal detection rate and estimates the number of change-points at almost optimal accuracy for vanishing signals, while still being robust. We compare HSMUCE with several state of the art methods in simulations and analyse current recordings of a transmembrane protein in the bacterial outer membrane with pronounced heterogeneity for its states. An R-package is available online

    Detection of trend changes in time series using Bayesian inference

    Full text link
    Change points in time series are perceived as isolated singularities where two regular trends of a given signal do not match. The detection of such transitions is of fundamental interest for the understanding of the system's internal dynamics. In practice observational noise makes it difficult to detect such change points in time series. In this work we elaborate a Bayesian method to estimate the location of the singularities and to produce some confidence intervals. We validate the ability and sensitivity of our inference method by estimating change points of synthetic data sets. As an application we use our algorithm to analyze the annual flow volume of the Nile River at Aswan from 1871 to 1970, where we confirm a well-established significant transition point within the time series.Comment: 9 pages, 12 figures, submitte

    Detection and localization of change-points in high-dimensional network traffic data

    Full text link
    We propose a novel and efficient method, that we shall call TopRank in the following paper, for detecting change-points in high-dimensional data. This issue is of growing concern to the network security community since network anomalies such as Denial of Service (DoS) attacks lead to changes in Internet traffic. Our method consists of a data reduction stage based on record filtering, followed by a nonparametric change-point detection test based on UU-statistics. Using this approach, we can address massive data streams and perform anomaly detection and localization on the fly. We show how it applies to some real Internet traffic provided by France-T\'el\'ecom (a French Internet service provider) in the framework of the ANR-RNRT OSCAR project. This approach is very attractive since it benefits from a low computational load and is able to detect and localize several types of network anomalies. We also assess the performance of the TopRank algorithm using synthetic data and compare it with alternative approaches based on random aggregation.Comment: Published in at http://dx.doi.org/10.1214/08-AOAS232 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org
    corecore