3,339 research outputs found

    Automatically Discovering, Reporting and Reproducing Android Application Crashes

    Full text link
    Mobile developers face unique challenges when detecting and reporting crashes in apps due to their prevailing GUI event-driven nature and additional sources of inputs (e.g., sensor readings). To support developers in these tasks, we introduce a novel, automated approach called CRASHSCOPE. This tool explores a given Android app using systematic input generation, according to several strategies informed by static and dynamic analyses, with the intrinsic goal of triggering crashes. When a crash is detected, CRASHSCOPE generates an augmented crash report containing screenshots, detailed crash reproduction steps, the captured exception stack trace, and a fully replayable script that automatically reproduces the crash on a target device(s). We evaluated CRASHSCOPE's effectiveness in discovering crashes as compared to five state-of-the-art Android input generation tools on 61 applications. The results demonstrate that CRASHSCOPE performs about as well as current tools for detecting crashes and provides more detailed fault information. Additionally, in a study analyzing eight real-world Android app crashes, we found that CRASHSCOPE's reports are easily readable and allow for reliable reproduction of crashes by presenting more explicit information than human written reports.Comment: 12 pages, in Proceedings of 9th IEEE International Conference on Software Testing, Verification and Validation (ICST'16), Chicago, IL, April 10-15, 2016, pp. 33-4

    Translating Video Recordings of Mobile App Usages into Replayable Scenarios

    Full text link
    Screen recordings of mobile applications are easy to obtain and capture a wealth of information pertinent to software developers (e.g., bugs or feature requests), making them a popular mechanism for crowdsourced app feedback. Thus, these videos are becoming a common artifact that developers must manage. In light of unique mobile development constraints, including swift release cycles and rapidly evolving platforms, automated techniques for analyzing all types of rich software artifacts provide benefit to mobile developers. Unfortunately, automatically analyzing screen recordings presents serious challenges, due to their graphical nature, compared to other types of (textual) artifacts. To address these challenges, this paper introduces V2S, a lightweight, automated approach for translating video recordings of Android app usages into replayable scenarios. V2S is based primarily on computer vision techniques and adapts recent solutions for object detection and image classification to detect and classify user actions captured in a video, and convert these into a replayable test scenario. We performed an extensive evaluation of V2S involving 175 videos depicting 3,534 GUI-based actions collected from users exercising features and reproducing bugs from over 80 popular Android apps. Our results illustrate that V2S can accurately replay scenarios from screen recordings, and is capable of reproducing ≈\approx 89% of our collected videos with minimal overhead. A case study with three industrial partners illustrates the potential usefulness of V2S from the viewpoint of developers.Comment: In proceedings of the 42nd International Conference on Software Engineering (ICSE'20), 13 page

    Scripted GUI Testing of Android Apps: A Study on Diffusion, Evolution and Fragility

    Full text link
    Background. Evidence suggests that mobile applications are not thoroughly tested as their desktop counterparts. In particular GUI testing is generally limited. Like web-based applications, mobile apps suffer from GUI test fragility, i.e. GUI test classes failing due to minor modifications in the GUI, without the application functionalities being altered. Aims. The objective of our study is to examine the diffusion of GUI testing on Android, and the amount of changes required to keep test classes up to date, and in particular the changes due to GUI test fragility. We define metrics to characterize the modifications and evolution of test classes and test methods, and proxies to estimate fragility-induced changes. Method. To perform our experiments, we selected six widely used open-source tools for scripted GUI testing of mobile applications previously described in the literature. We have mined the repositories on GitHub that used those tools, and computed our set of metrics. Results. We found that none of the considered GUI testing frameworks achieved a major diffusion among the open-source Android projects available on GitHub. For projects with GUI tests, we found that test suites have to be modified often, specifically 5\%-10\% of developers' modified LOCs belong to tests, and that a relevant portion (60\% on average) of such modifications are induced by fragility. Conclusions. Fragility of GUI test classes constitute a relevant concern, possibly being an obstacle for developers to adopt automated scripted GUI tests. This first evaluation and measure of fragility of Android scripted GUI testing can constitute a benchmark for developers, and the basis for the definition of a taxonomy of fragility causes, and actionable guidelines to mitigate the issue.Comment: PROMISE'17 Conference, Best Paper Awar

    Stack Overflow: A Code Laundering Platform?

    Full text link
    Developers use Question and Answer (Q&A) websites to exchange knowledge and expertise. Stack Overflow is a popular Q&A website where developers discuss coding problems and share code examples. Although all Stack Overflow posts are free to access, code examples on Stack Overflow are governed by the Creative Commons Attribute-ShareAlike 3.0 Unported license that developers should obey when reusing code from Stack Overflow or posting code to Stack Overflow. In this paper, we conduct a case study with 399 Android apps, to investigate whether developers respect license terms when reusing code from Stack Overflow posts (and the other way around). We found 232 code snippets in 62 Android apps from our dataset that were potentially reused from Stack Overflow, and 1,226 Stack Overflow posts containing code examples that are clones of code released in 68 Android apps, suggesting that developers may have copied the code of these apps to answer Stack Overflow questions. We investigated the licenses of these pieces of code and observed 1,279 cases of potential license violations (related to code posting to Stack overflow or code reuse from Stack overflow). This paper aims to raise the awareness of the software engineering community about potential unethical code reuse activities taking place on Q&A websites like Stack Overflow.Comment: In proceedings of the 24th IEEE International Conference on Software Analysis, Evolution, and Reengineering (SANER

    Automated Test Selection for Android Apps Based on APK and Activity Classification

    Get PDF
    Several techniques exist for mobile test automation, from script-based techniques to automated test generation based on GUI models. Most techniques fall short in being adopted extensively by practitioners because of the very costly definition (and maintenance) of test cases. We present a novel testing framework for Android apps that allows a developer to write effective test scripts without having to know the implementation details and the user interface of the app under test. The main goal of the framework is to generate adaptive tests that can be executed on a significant number of apps, or different releases of the same app, without manual editing of the tests. The frameworks consists of: (1) a Test Scripting Language, that allows the tester to write generic test scripts tailored to activity and app categories; (2) a State Graph Modeler, that creates a model of the app’s GUI, identifying activities (i.e., screens) and widgets; (3) an app classifier that determines the type of application under test; (4) an activity classifier that determines the purpose of each screen; (5) a test adapter that executes test scripts that are compatible with the specific app and activity, automatically tailoring the test scripts to the classes of the app and the activities under test. We evaluated empirically the components of our testing framework. The classifiers were able to outperform available approaches in the literature. The developed testing framework was able to correctly adapt high-level test cases to 28 out of 32 applications, and to reduce the LOCs of the test scripts of around 90%. We conclude that machine learning can be fruitfully applied to the creation of high-level, adaptive test cases for Android apps. Our framework is modular in nature and allows expansions through the addition of new commands to be executed on the classified apps and activities

    An App Performance Optimization Advisor for Mobile Device App Marketplaces

    Full text link
    On mobile phones, users and developers use apps official marketplaces serving as repositories of apps. The Google Play Store and Apple Store are the official marketplaces of Android and Apple products which offer more than a million apps. Although both repositories offer description of apps, information concerning performance is not available. Due to the constrained hardware of mobile devices, users and developers have to meticulously manage the resources available and they should be given access to performance information about apps. Even if this information was available, the selection of apps would still depend on user preferences and it would require a huge cognitive effort to make optimal decisions. Considering this fact we propose APOA, a recommendation system which can be implemented in any marketplace for helping users and developers to compare apps in terms of performance. APOA uses as input metric values of apps and a set of metrics to optimize. It solves an optimization problem and it generates optimal sets of apps for different user's context. We show how APOA works over an Android case study. Out of 140 apps, we define typical usage scenarios and we collect measurements of power, CPU, memory, and network usages to demonstrate the benefit of using APOA.Comment: 18 pages, 8 figure
    • …
    corecore