3 research outputs found

    Accountable Trapdoor Sanitizable Signatures

    Get PDF
    Abstract. Sanitizable signature (SS) allows a signer to partly delegate signing rights to a predeter-mined party, called sanitizer, who can later modify certain designated parts of a message originally signed by the signer and generate a new signature on the sanitized message without interacting with the signer. One of the important security requirements of sanitizable signatures is accountability, which allows the signer to prove, in case of dispute, to a third party that a message was modified by the sanitizer. Trapdoor sanitizable signature (TSS) enables a signer of a message to delegate the power of sanitization to any parties at anytime but at the expense of losing the accountability property. In this paper, we introduce the notion of accountable trapdoor sanitizable signature (ATSS) which lies between SS and TSS. As a building block for constructing ATSS, we also introduce the notion of accountable chameleon hash (ACH), which is an extension of chameleon hash (CH) and might be of independent interest. We propose a concrete construction of ACH and show how to use it to construct an ATSS scheme

    Chameleon-Hashes with Dual Long-Term Trapdoors and Their Applications

    Get PDF
    A chameleon-hash behaves likes a standard collision-resistant hash function for outsiders. If, however, a trapdoor is known, arbitrary collisions can be found. Chameleon-hashes with ephemeral trapdoors (CHET; Camenisch et al., PKC ’17) allow prohibiting that the holder of the long-term trapdoor can find collisions by introducing a second, ephemeral, trapdoor. However, this ephemeral trapdoor is required to be chosen freshly for each hash. We extend these ideas and introduce the notion of chameleon-hashes with dual long-term trapdoors (CHDLTT). Here, the second trapdoor is not chosen freshly for each new hash; Rather, the hashing party can decide if it wants to generate a fresh second trapdoor or use an existing one. This primitive generalizes CHETs, extends their applicability and enables some appealing new use-cases, including three-party sanitizable signatures, group-level selectively revocable signatures and break-the-glass signatures. We present two provably secure constructions and an implementation which demonstrates that this extended primitive is efficient enough for use in practice

    Chameleon Hashes Without Key Exposure Based on Factoring

    No full text
    corecore