2,379 research outputs found

    Requirements and Recommendations for IoT/IIoT Models to automate Security Assurance through Threat Modelling, Security Analysis and Penetration Testing

    Full text link
    The factories of the future require efficient interconnection of their physical machines into the cyber space to cope with the emerging need of an increased uptime of machines, higher performance rates, an improved level of productivity and a collective collaboration along the supply chain. With the rapid growth of the Internet of Things (IoT), and its application in industrial areas, the so called Industrial Internet of Things (IIoT)/Industry 4.0 emerged. However, further to the rapid growth of IoT/IIoT systems, cyber attacks are an emerging threat and simple manual security testing can often not cope with the scale of large IoT/IIoT networks. In this paper, we suggest to extract metadata from commonly used diagrams and models in a typical software development process, to automate the process of threat modelling, security analysis and penetration testing, without detailed prior security knowledge. In that context, we present requirements and recommendations for metadata in IoT/IIoT models that are needed as necessary input parameters of security assurance tools.Comment: 8 pages, Proceedings of the 14th International Conference on Availability, Reliability and Security (ARES 2019) (ARES '19), August 26-29, 2019, Canterbury, United Kingdo

    Recent Advances in Machine Learning for Network Automation in the O-RAN

    Get PDF
    © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY), https://creativecommons.org/licenses/by/4.0/The evolution of network technologies has witnessed a paradigm shift toward open and intelligent networks, with the Open Radio Access Network (O-RAN) architecture emerging as a promising solution. O-RAN introduces disaggregation and virtualization, enabling network operators to deploy multi-vendor and interoperable solutions. However, managing and automating the complex O-RAN ecosystem presents numerous challenges. To address this, machine learning (ML) techniques have gained considerable attention in recent years, offering promising avenues for network automation in O-RAN. This paper presents a comprehensive survey of the current research efforts on network automation using ML in O-RAN. We begin by providing an overview of the O-RAN architecture and its key components, highlighting the need for automation. Subsequently, we delve into O-RAN support for ML techniques. The survey then explores challenges in network automation using ML within the O-RAN environment, followed by the existing research studies discussing application of ML algorithms and frameworks for network automation in O-RAN. The survey further discusses the research opportunities by identifying important aspects where ML techniques can benefit.Peer reviewe

    Advancements In Crowd-Monitoring System: A Comprehensive Analysis of Systematic Approaches and Automation Algorithms: State-of-The-Art

    Full text link
    Growing apprehensions surrounding public safety have captured the attention of numerous governments and security agencies across the globe. These entities are increasingly acknowledging the imperative need for reliable and secure crowd-monitoring systems to address these concerns. Effectively managing human gatherings necessitates proactive measures to prevent unforeseen events or complications, ensuring a safe and well-coordinated environment. The scarcity of research focusing on crowd monitoring systems and their security implications has given rise to a burgeoning area of investigation, exploring potential approaches to safeguard human congregations effectively. Crowd monitoring systems depend on a bifurcated approach, encompassing vision-based and non-vision-based technologies. An in-depth analysis of these two methodologies will be conducted in this research. The efficacy of these approaches is contingent upon the specific environment and temporal context in which they are deployed, as they each offer distinct advantages. This paper endeavors to present an in-depth analysis of the recent incorporation of artificial intelligence (AI) algorithms and models into automated systems, emphasizing their contemporary applications and effectiveness in various contexts
    • …
    corecore