40,266 research outputs found

    On self-protecting singlets in cuprate superconductors

    Full text link
    The basal area (Cu-Cu grid) of the cuprate superconductors not only tends to shrink on hole doping, as expected from single electron quantum chemistry, but exhibits also an electronically incompressible "hump'' around optimum doping n_opt = 0.16. The hump collapses near critical doping n_crit = 0.19. We analyze the origin of the hump in terms of a classical liquid of interacting incompressible particles in a container with antiferromagnetic walls. Oxygen holes interacting with the wall form singlets, protect themselves against other holes by an incompressible "spin fence'', and thus interact also with the lattice. Occupation of the CuO_2 lattice with holes must therefore follow a non-double-occupant constraint also for the oxygen cage enclosing the copper hole. Closest packing of self-protecting singlets is found to occur around critical doping; closest packing of paired self-protecting singlets around optimum doping. These singlet-states are bosonic, but are not magnetic polarons.Comment: reviewed version, 7 pages, 10 figure

    Brownian dynamics simulations of planar mixed flows of polymer solutions at finite concentrations

    Full text link
    Periodic boundary conditions for planar mixed flows are implemented in the context of a multi-chain Brownian dynamics simulation algorithm. The effect of shear rate γ˙\dot{\gamma}, and extension rate ϵ˙\dot{\epsilon}, on the size of polymer chains, \left, and on the polymer contribution to viscosity, η\eta, is examined for solutions of FENE dumbbells at finite concentrations, with excluded volume interactions between the beads taken into account. The influence of the mixedness parameter, χ\chi, and flow strength, Γ˙\dot{\Gamma}, on \left and η\eta, is also examined, where χ0\chi \rightarrow 0 corresponds to pure shear flow, and χ1\chi \rightarrow 1 corresponds to pure extensional flow. It is shown that there exists a critical value, χc\chi_\text{c}, such that the flow is shear dominated for χ<χc\chi < \chi_\text{c}, and extension dominated for χ>χc\chi > \chi_\text{c}.Comment: 18 pages, 12 figures, to appear in Chemical Engineering Scienc

    Sensing viruses by mechanical tension of DNA in responsive hydrogels

    Full text link
    The rapid worldwide spread of severe viral infections, often involving novel modifications of viruses, poses major challenges to our health care systems. This means that tools that can efficiently and specifically diagnose viruses are much needed. To be relevant for a broad application in local health care centers, such tools should be relatively cheap and easy to use. Here we discuss the biophysical potential for the macroscopic detection of viruses based on the induction of a mechanical stress in a bundle of pre-stretched DNA molecules upon binding of viruses to the DNA. We show that the affinity of the DNA to the charged virus surface induces a local melting of the double-helix into two single-stranded DNA. This process effects a mechanical stress along the DNA chains leading to an overall contraction of the DNA. Our results suggest that when such DNA bundles are incorporated in a supporting matrix such as a responsive hydrogel, the presence of viruses may indeed lead to a significant, macroscopic mechanical deformation of the matrix. We discuss the biophysical basis for this effect and characterize the physical properties of the associated DNA melting transition. In particular, we reveal several scaling relations between the relevant physical parameters of the system. We promote this DNA-based assay for efficient and specific virus screening.Comment: 11 pages, 7 figures, supplementary material included in the source file

    Gaussian ellipsoid model for confined polymer systems

    Full text link
    Polymer systems in slab geometries are studied on the basis of the recently presented Gaussian Ellipsoid Model [J. Chem. Phys. 114, 7655 (2001)].The potential of the confining walls has an exponential shape. For homogeneous systems in thermodynamic equilibrium we discuss density, orientation and deformation profiles of the polymers close to the walls. For strongly segregated mixtures of polymer components A and B equilibrium profiles are studied near a planar interface separating A and B rich regions. Spinodal decomposition processes of the mixtures in the presence of neutral walls show upon strong confinement an increase of the lateral size of A and B rich domains and a slowing down of the demixing kinetics. These findings are in agreement with predictions from time dependent Ginzburg--Landau theory. In the case, where one wall periodically favors one of the two mixture components over the other, different equilibrium structures emerge and lead to different kinetic pathways of spinodal decomposition processes in such systems.Comment: 18 pages, 16 figures, submitted to J. Chem. Phy

    Microfluidic systems for the analysis of the viscoelastic fluid flow phenomena in porous media

    Get PDF
    In this study, two microfluidic devices are proposed as simplified 1-D microfluidic analogues of a porous medium. The objectives are twofold: firstly to assess the usefulness of the microchannels to mimic the porous medium in a controlled and simplified manner, and secondly to obtain a better insight about the flow characteristics of viscoelastic fluids flowing through a packed bed. For these purposes, flow visualizations and pressure drop measurements are conducted with Newtonian and viscoelastic fluids. The 1-D microfluidic analogues of porous medium consisted of microchannels with a sequence of contractions/ expansions disposed in symmetric and asymmetric arrangements. The real porous medium is in reality, a complex combination of the two arrangements of particles simulated with the microchannels, which can be considered as limiting ideal configurations. The results show that both configurations are able to mimic well the pressure drop variation with flow rate for Newtonian fluids. However, due to the intrinsic differences in the deformation rate profiles associated with each microgeometry, the symmetric configuration is more suitable for studying the flow of viscoelastic fluids at low De values, while the asymmetric configuration provides better results at high De values. In this way, both microgeometries seem to be complementary and could be interesting tools to obtain a better insight about the flow of viscoelastic fluids through a porous medium. Such model systems could be very interesting to use in polymer-flood processes for enhanced oil recovery, for instance, as a tool for selecting the most suitable viscoelastic fluid to be used in a specific formation. The selection of the fluid properties of a detergent for cleaning oil contaminated soil, sand, and in general, any porous material, is another possible application

    Confocal and multiphoton imaging of intracellular Ca<sup>2+</sup>

    Get PDF
    This chapter compares the imaging capabilities of a range of systems including multiphoton microscopy in regard to measurements of intracellular Ca&lt;sup&gt;2+&lt;/sup&gt; within living cells. In particular, the excitation spectra of popular fluorescent Ca&lt;sup&gt;2+&lt;/sup&gt; indicators are shown during 1P and 2P excitation. The strengths and limitations of the current indicators are discussed along with error analysis which highlights the value of matching the Ca&lt;sup&gt;2+&lt;/sup&gt; affinity of the dye to a particular aspect of Ca&lt;sup&gt;2+&lt;/sup&gt; signaling. Finally, the combined emission spectra of Ca&lt;sup&gt;2+&lt;/sup&gt; and voltage sensitive dyes are compared to allow the choice of the optimum combination to allow simultaneous intracellular Ca&lt;sup&gt;2+&lt;/sup&gt; and membrane voltage measurement

    Pathologic gene network rewiring implicates PPP1R3A as a central regulator in pressure overload heart failure

    Get PDF
    Heart failure is a leading cause of mortality, yet our understanding of the genetic interactions underlying this disease remains incomplete. Here, we harvest 1352 healthy and failing human hearts directly from transplant center operating rooms, and obtain genome-wide genotyping and gene expression measurements for a subset of 313. We build failing and non-failing cardiac regulatory gene networks, revealing important regulators and cardiac expression quantitative trait loci (eQTLs). PPP1R3A emerges as a regulator whose network connectivity changes significantly between health and disease. RNA sequencing after PPP1R3A knockdown validates network-based predictions, and highlights metabolic pathway regulation associated with increased cardiomyocyte size and perturbed respiratory metabolism. Mice lacking PPP1R3A are protected against pressure-overload heart failure. We present a global gene interaction map of the human heart failure transition, identify previously unreported cardiac eQTLs, and demonstrate the discovery potential of disease-specific networks through the description of PPP1R3A as a central regulator in heart failure
    corecore