282,287 research outputs found
Prenatal Neurogenesis in Autism Spectrum Disorders.
An ever-increasing body of literature describes compelling evidence that a subset of young children on the autism spectrum show abnormal cerebral growth trajectories. In these cases, normal cerebral size at birth is followed by a period of abnormal growth and starting in late childhood often by regression compared to unaffected controls. Recent work has demonstrated an abnormal increase in the number of neurons of the prefrontal cortex suggesting that cerebral size increase in autism is driven by excess neuronal production. In addition, some affected children display patches of abnormal laminar positioning of cortical projection neurons. As both cortical projection neuron numbers and their correct layering within the developing cortex requires the undisturbed proliferation of neural progenitors, it appears that neural progenitors lie in the center of the autism pathology associated with early brain overgrowth. Consequently, autism spectrum disorders associated with cerebral enlargement should be viewed as birth defects of an early embryonic origin with profound implications for their early diagnosis, preventive strategies, and therapeutic intervention
Anatomical Parcellation of Cortical Language Sites
Anatomical labeling of cerebral cortical stimulation (CSM) sites is necessary for intelligent computer querying of a rich and unique experimental database examining neural substrates underlying human language production. To this end, we have developed a parcellation scheme for the lateral surface of the human cerebral cortex. We then compared results generated utilizing this approach to those generated using an alternative method implemented in the Talairach Daemon
A developmental and genetic classification for malformations of cortical development: update 2012.
Malformations of cerebral cortical development include a wide range of developmental disorders that are common causes of neurodevelopmental delay and epilepsy. In addition, study of these disorders contributes greatly to the understanding of normal brain development and its perturbations. The rapid recent evolution of molecular biology, genetics and imaging has resulted in an explosive increase in our knowledge of cerebral cortex development and in the number and types of malformations of cortical development that have been reported. These advances continue to modify our perception of these malformations. This review addresses recent changes in our perception of these disorders and proposes a modified classification based upon updates in our knowledge of cerebral cortical development
Hierarchical Features of Large-Scale Cortical Connectivity
The analysis of complex networks has revealed patterns of organization in a
variety of natural and artificial systems, including neuronal networks of the
brain at multiple scales. In this paper, we describe a novel analysis of the
large-scale connectivity between regions of the mammalian cerebral cortex,
utilizing a set of hierarchical measurements proposed recently. We examine
previously identified functional clusters of brain regions in macaque visual
cortex and cat cortex and find significant differences between such clusters in
terms of several hierarchical measures, revealing differences in how these
clusters are embedded in the overall cortical architecture. For example, the
ventral cluster of visual cortex maintains structurally more segregated, less
divergent connections than the dorsal cluster, which may point to functionally
different roles of their constituent brain regions.Comment: 17 pages, 6 figure
Multiple conserved regulatory domains promote Fezf2 expression in the developing cerebral cortex.
BackgroundThe genetic programs required for development of the cerebral cortex are under intense investigation. However, non-coding DNA elements that control the expression of developmentally important genes remain poorly defined. Here we investigate the regulation of Fezf2, a transcription factor that is necessary for the generation of deep-layer cortical projection neurons.ResultsUsing a combination of chromatin immunoprecipitation followed by high throughput sequencing (ChIP-seq) we mapped the binding of four deep-layer-enriched transcription factors previously shown to be important for cortical development. Building upon this we characterized the activity of three regulatory regions around the Fezf2 locus at multiple stages throughout corticogenesis. We identified a promoter that was sufficient for expression in the cerebral cortex, and enhancers that drove reporter gene expression in distinct forebrain domains, including progenitor cells and cortical projection neurons.ConclusionsThese results provide insight into the regulatory logic controlling Fezf2 expression and further the understanding of how multiple non-coding regulatory domains can collaborate to control gene expression in vivo
Metastability, Criticality and Phase Transitions in brain and its Models
This essay extends the previously deposited paper "Oscillations, Metastability and Phase Transitions" to incorporate the theory of Self-organizing Criticality. The twin concepts of Scaling and Universality of the theory of nonequilibrium phase transitions is applied to the role of reentrant activity in neural circuits of cerebral cortex and subcortical neural structures
Computerized Analysis of Magnetic Resonance Images to Study Cerebral Anatomy in Developing Neonates
The study of cerebral anatomy in developing neonates is of great importance for
the understanding of brain development during the early period of life. This
dissertation therefore focuses on three challenges in the modelling of cerebral
anatomy in neonates during brain development. The methods that have been
developed all use Magnetic Resonance Images (MRI) as source data.
To facilitate study of vascular development in the neonatal period, a set of image
analysis algorithms are developed to automatically extract and model cerebral
vessel trees. The whole process consists of cerebral vessel tracking from
automatically placed seed points, vessel tree generation, and vasculature
registration and matching. These algorithms have been tested on clinical Time-of-
Flight (TOF) MR angiographic datasets.
To facilitate study of the neonatal cortex a complete cerebral cortex segmentation
and reconstruction pipeline has been developed. Segmentation of the neonatal
cortex is not effectively done by existing algorithms designed for the adult brain
because the contrast between grey and white matter is reversed. This causes pixels
containing tissue mixtures to be incorrectly labelled by conventional methods. The
neonatal cortical segmentation method that has been developed is based on a novel
expectation-maximization (EM) method with explicit correction for mislabelled
partial volume voxels. Based on the resulting cortical segmentation, an implicit
surface evolution technique is adopted for the reconstruction of the cortex in
neonates. The performance of the method is investigated by performing a detailed
landmark study.
To facilitate study of cortical development, a cortical surface registration algorithm
for aligning the cortical surface is developed. The method first inflates extracted
cortical surfaces and then performs a non-rigid surface registration using free-form
deformations (FFDs) to remove residual alignment. Validation experiments using
data labelled by an expert observer demonstrate that the method can capture local
changes and follow the growth of specific sulcus
- …
