3 research outputs found

    A spatial decomposition based math-heuristic approach to the asset protection problem

    Get PDF
    This paper addresses the highly critical task of planning asset protection activities during uncontrollable wildfires known in the literature as the Asset Protection Problem (APP). In the APP each asset requires a protective service to be performed by a set of emergency response vehicles within a specific time period defined by the spread of fire. We propose a new spatial decomposition based math-heuristic approach for the solution of large-scale APPs. The heuristic exploits the property that time windows are geographically correlated as fire spreads across a landscape. Thus an appropriate division of the landscape allows the problem to be decomposed into smaller more tractable sub-problems. The main challenge then is to minimise the difference between the final locations of vehicles from one division to the optimal starting locations of the next division. The performance of the proposed approach is tested on a set of benchmark instances from the literature and compared to the most recent Adaptive Large Neighborhood Search (ALNS) algorithm developed for the APP. The results show that our proposed solution approach outperforms the ALNS algorithm on all instances with comparable computation time. We also see a trend with the margin of out-performance becoming more significant as the problems become larger

    An auction for collaborative vehicle routing: Models and algorithms

    Get PDF
    Increasing competition and expectations from customers pressures carriers to further improve efficiency. Forming collaborations is essential for carriers to reach their targeted efficiency levels. In this study, we investigate an auction mechanism to facilitate collaboration amongst carriers while maintaining autonomy for the individual carriers. Multiple auction implementations are evaluated. As the underlying decision problem (which is a traditional vehicle routing problem) is known to be NP-hard, this auction mechanism has an important inherent complexity. Therefore, we use fast and efficient algorithms for the vehicle routing problem to ensure that the auction can be used in operational decision making. Numerical results are presented, indicating that the auction achieves a savings potential better than the thus far reported approaches in the literature. Managerial insights are discussed, particularly related to the properties of the auction and value of the information

    Centralized bundle generation in auction-based collaborative transportation

    No full text
    In horizontal collaborations, carriers form coalitions in order to perform parts of their logistics operations jointly. By exchanging transportation requests among each other, they can operate more efficiently and in a more sustainable way. This exchange of requests can be organized through combinatorial auctions, where collaborators submit requests for exchange to a common pool. The requests in the pool are grouped into bundles, and these are offered to participating carriers. From a practical point of view, offering all possible bundles is not manageable, since the number of bundles grows exponentially with the number of traded requests. We show how the complete set of bundles can be efficiently reduced to a subset of attractive ones. For this we define the Bundle Generation Problem (BuGP). The aim is to provide a reduced set of offered bundles that maximizes the total coalition profit, while a feasible assignment of bundles to carriers is guaranteed. The objective function, however, could only be evaluated whether carriers reveal sensitive information, which would be unrealistic. Thus, we develop a proxy for the objective function for assessing the attractiveness of bundles under incomplete information. This is used in a genetic algorithms-based framework that aims at producing attractive and feasible bundles, such that all requirements of the BuGP are met. We achieve very good solution quality, while reducing the computational time for the auction procedure significantly. This is an important step towards running combinatorial auctions of real-world size, which were previously intractable due to their computational complexity. The strengths but also the limitations of the proposed approach are discussed.© The Author(s) 201
    corecore