175,143 research outputs found

    Centrality measures for graphons: Accounting for uncertainty in networks

    Full text link
    As relational datasets modeled as graphs keep increasing in size and their data-acquisition is permeated by uncertainty, graph-based analysis techniques can become computationally and conceptually challenging. In particular, node centrality measures rely on the assumption that the graph is perfectly known -- a premise not necessarily fulfilled for large, uncertain networks. Accordingly, centrality measures may fail to faithfully extract the importance of nodes in the presence of uncertainty. To mitigate these problems, we suggest a statistical approach based on graphon theory: we introduce formal definitions of centrality measures for graphons and establish their connections to classical graph centrality measures. A key advantage of this approach is that centrality measures defined at the modeling level of graphons are inherently robust to stochastic variations of specific graph realizations. Using the theory of linear integral operators, we define degree, eigenvector, Katz and PageRank centrality functions for graphons and establish concentration inequalities demonstrating that graphon centrality functions arise naturally as limits of their counterparts defined on sequences of graphs of increasing size. The same concentration inequalities also provide high-probability bounds between the graphon centrality functions and the centrality measures on any sampled graph, thereby establishing a measure of uncertainty of the measured centrality score. The same concentration inequalities also provide high-probability bounds between the graphon centrality functions and the centrality measures on any sampled graph, thereby establishing a measure of uncertainty of the measured centrality score.Comment: Authors ordered alphabetically, all authors contributed equally. 21 pages, 7 figure

    Correlation Between Student Collaboration Network Centrality and Academic Performance

    Full text link
    We compute nodal centrality measures on the collaboration networks of students enrolled in three upper-division physics courses, usually taken sequentially, at the Colorado School of Mines. These are complex networks in which links between students indicate assistance with homework. The courses included in the study are intermediate Classical Mechanics, introductory Quantum Mechanics, and intermediate Electromagnetism. By correlating these nodal centrality measures with students' scores on homework and exams, we find four centrality measures that correlate significantly with students' homework scores in all three courses: in-strength, out-strength, closeness centrality, and harmonic centrality. These correlations suggest that students who not only collaborate often, but also collaborate significantly with many different people tend to achieve higher grades. Centrality measures between simultaneous collaboration networks (analytical vs. numerical homework collaboration) composed of the same students also correlate with each other, suggesting that students' collaboration strategies remain relatively stable when presented with homework assignments targeting different skills. Additionally, we correlate centrality measures between collaboration networks from different courses and find that the four centrality measures with the strongest relationship to students' homework scores are also the most stable measures across networks involving different courses. Correlations of centrality measures with exam scores were generally smaller than the correlations with homework scores, though this finding varied across courses.Comment: 10 pages, 4 figures, submitted to Phys. Rev. PE

    The impact of partially missing communities~on the reliability of centrality measures

    Full text link
    Network data is usually not error-free, and the absence of some nodes is a very common type of measurement error. Studies have shown that the reliability of centrality measures is severely affected by missing nodes. This paper investigates the reliability of centrality measures when missing nodes are likely to belong to the same community. We study the behavior of five commonly used centrality measures in uniform and scale-free networks in various error scenarios. We find that centrality measures are generally more reliable when missing nodes are likely to belong to the same community than in cases in which nodes are missing uniformly at random. In scale-free networks, the betweenness centrality becomes, however, less reliable when missing nodes are more likely to belong to the same community. Moreover, centrality measures in scale-free networks are more reliable in networks with stronger community structure. In contrast, we do not observe this effect for uniform networks. Our observations suggest that the impact of missing nodes on the reliability of centrality measures might not be as severe as the literature suggests

    Spectral centrality measures in complex networks

    Full text link
    Complex networks are characterized by heterogeneous distributions of the degree of nodes, which produce a large diversification of the roles of the nodes within the network. Several centrality measures have been introduced to rank nodes based on their topological importance within a graph. Here we review and compare centrality measures based on spectral properties of graph matrices. We shall focus on PageRank, eigenvector centrality and the hub/authority scores of HITS. We derive simple relations between the measures and the (in)degree of the nodes, in some limits. We also compare the rankings obtained with different centrality measures.Comment: 11 pages, 10 figures, 5 tables. Final version published in Physical Review

    Robustness of Network Measures to Link Errors

    Full text link
    In various applications involving complex networks, network measures are employed to assess the relative importance of network nodes. However, the robustness of such measures in the presence of link inaccuracies has not been well characterized. Here we present two simple stochastic models of false and missing links and study the effect of link errors on three commonly used node centrality measures: degree centrality, betweenness centrality, and dynamical importance. We perform numerical simulations to assess robustness of these three centrality measures. We also develop an analytical theory, which we compare with our simulations, obtaining very good agreement.Comment: 9 pages, 9 figure

    Network centrality: an introduction

    Full text link
    Centrality is a key property of complex networks that influences the behavior of dynamical processes, like synchronization and epidemic spreading, and can bring important information about the organization of complex systems, like our brain and society. There are many metrics to quantify the node centrality in networks. Here, we review the main centrality measures and discuss their main features and limitations. The influence of network centrality on epidemic spreading and synchronization is also pointed out in this chapter. Moreover, we present the application of centrality measures to understand the function of complex systems, including biological and cortical networks. Finally, we discuss some perspectives and challenges to generalize centrality measures for multilayer and temporal networks.Comment: Book Chapter in "From nonlinear dynamics to complex systems: A Mathematical modeling approach" by Springe
    corecore