688,192 research outputs found
Influence of central venous pressure upon sinus node responses to arterial baroreflex stimulation in man
Measurements were made of sinus node responses to arterial baroreceptor stimulation with phenylephrine injection or neck suction, before and during changes of central venous pressure provoked by lower body negative pressure or leg and lower truck elevation. Variations of central venous pressure between 1.1 and 9.0 mm Hg did not influence arterial baroreflex mediated bradycardia. Baroreflex sinus node responses were augmented by intravenous propranolol, but the level of responses after propranolol was comparable during the control state, lower body negative pressure, and leg and trunk elevation. Sinus node responses to very brief baroreceptor stimuli applied during the transitions of central venous pressure also were comparable in the three states. The authors conclude that physiological variations of central venous pressure do not influence sinus node responses to arterial baroreceptor stimulation in man
The dynamical response to the node defect in thermally activated remagnetization of magnetic dot array
The influence of nonmagnetic central node defect on dynamical properties of
regular square-shaped 5 x 5 segment of magnetic dot array under the thermal
activation is investigated via computer simulations. Using stochastic
Landau-Lifshitz-Gilbert equation we simulate hysteresis and relaxation
processes. The remarkable quantitative and qualitative differences between
magnetic dot arrays with nonmagnetic central node defect and magnetic dot
arrays without defects have been found.Comment: 4 pages,5 figures, submitted to J. Magn. Magn. Matte
Spin and pseudospin symmetries of the Dirac equation with confining central potentials
We derive the node structure of the radial functions which are solutions of
the Dirac equation with scalar and vector confining central potentials,
in the conditions of exact spin or pseudospin symmetry, i.e., when one has
, where is a constant. We show that the node structure for exact
spin symmetry is the same as the one for central potentials which go to zero at
infinity but for exact pseudospin symmetry the structure is reversed. We obtain
the important result that it is possible to have positive energy bound
solutions in exact pseudospin symmetry conditions for confining potentials of
any shape, including naturally those used in hadron physics, from nuclear to
quark models. Since this does not happen for potentials going to zero at large
distances, used in nuclear relativistic mean-field potentials or in the atomic
nucleus, this shows the decisive importance of the asymptotic behavior of the
scalar and vector central potentials on the onset of pseudospin symmetry and on
the node structure of the radial functions. Finally, we show that these results
are still valid for negative energy bound solutions for anti-fermions.Comment: 7 pages, uses revtex macro
Frequency translating phase conjugation circuit for active retrodirective antenna array
An active retrodirective antenna array which has central phasing from a reference antenna element through a "tree" structured network of transmission lines utilizes a number of phase conjugate circuits (PCCs) at each node and a phase reference regeneration circuit (PRR) at each node except the initial node. Each node virtually coincides with an element of the array. A PCC generates the exact conjugate phase of an incident signal using a phase locked loop which combines the phases in an up converter, divides the sum by 2 and mixes the result with the phase in a down converter for phase detection. The PRR extracts the phase from the conjugate phase. Both the PCC and the PRR are not only exact but also free from mixer degeneracy
Coverage and density of a low power, low data rate, spread spectrum wireless sensor network for agricultural monitoring
A physical layer specification for a low power, low complexity, low data rate sensor network suitable for agricultural monitoring is investigated. Code division multiple access (CDMA) with high processing gain is used to facilitate transmission powers which comply with the Ultra Wide Band (UWB) spectral mask, and this permits physically small nodes with limited energy storage capacity. The interference arising from each node is calculated, and it is shown that for the investigated scenario and specification, an aggregate data rate of 2 bytes per minute and a node population of approximately 1000 can be supported at distances up to a few kilometres from the central node, with less than 0.2% chance of failure due to multiple access interference
Connectivity-Based Self-Localization in WSNs
Efficient localization methods are among the major challenges in wireless sensor networks today. In this paper, we present our so-called connectivity based approach i.e, based on local connectivity information, to tackle this problem. At first the method fragments the network into larger groups labeled as packs. Based on the mutual connectivity relations with their surrounding packs, we identify border nodes as well as the central node. As this first approach requires some a-priori knowledge on the network topology, we also present a novel segment-based fragmentation method to estimate the central pack of the network as well as detecting so-called corner packs without any a-priori knowledge. Based on these detected points, the network is fragmented into a set of even larger elements, so-called segments built on top of the packs, supporting even more localization information as they all reach the central node
Insertion Heuristics for Central Cycle Problems
A central cycle problem requires a cycle that is
reasonably short and keeps a the maximum distance
from any node not on the cycle to its nearest
node on the cycle reasonably low. The objective
may be to minimise maximumdistance or cycle
length and the solution may have further constraints.
Most classes of central cycle problems
are NP-hard. This paper investigates insertion
heuristics for central cycle problems, drawing on
insertion heuristics for p-centres [7] and travelling
salesman tours [21]. It shows that a modified
farthest insertion heuristic has reasonable worstcase
bounds for a particular class of problem.
It then compares the performance of two farthest
insertion heuristics against each other and
against bounds (where available) obtained by integer
programming on a range of problems from
TSPLIB [20]. It shows that a simple farthest insertion
heuristic is fast, performs well in practice
and so is likely to be useful for a general problems
or as the basis for more complex heuristics
for specific problems
- …
