4 research outputs found

    Kinematic and dynamic approaches in gait optimization for humanoid robot locomotion

    Get PDF
    © Springer International Publishing AG 2018. Humanoid robot related research keeps attracting many researchers nowadays because of a high potential of bipedal locomotion. While many researchers concentrate on a robot body movement due to its direct contribution to the robot dynamics, the optimality of a leg trajectory has not been studied in details yet. Our paper is targeted to decrease this obvious gap and deals with optimal trajectory planning for bipedal humanoid robot walking. The main attention is paid to maximization of locomotion speed while considering velocity, acceleration and power limitations of each joint. The kinematic and dynamic approaches are used to obtain a desired optimal trajectory. Obtained results provide higher robot performance comparing to commonly used trajectories for control bipedal robots

    Особенности решения уравнений метода обратной задачи для синтеза устойчивого управляемого движения шагающих роботов

    Get PDF
    The problem of walking robots controlled motion synthesis by the inverse dynamic method is considered. The inverse dynamic method equations are represented by the methods of multibody system dynamics as free bodies motion equations and constraint equations. The variety of constraint equations group are introduced to specify the robot gait, to implement the robot stability conditions and to coordinate specified robot links movement. The key feature of the inverse dynamic method equations in this formulation is the presence of the second derivatives of the system coordinates in the constraint equations expressing the stability conditions that ensure the maintenance of the vertical position by the robot. The determined solution of such equations in general case is impossible due to the uncertainty of the initial conditions for the Lagrange multipliers. An approximate method for solving the inverse dynamic without taking into account the inertial components in the constraint equations that determine the stability of the robot is considered. Constraint equations that determine the coordinate movement of individual robot links and required for unique problem solving based on approximate equations are presented. The implementation of program motion synthesis methods in the control system of the humanoid robot AR-600 is presented. The comparison of theoretical and experimental parameters of controlled motion is performed. It has been established that with the achieved high accuracy of the robot links tracking drives control with an error of several percent, the indicators of the robot's absolute movements, in particular, the angles of roll, yaw and pitch, differ from the programmed by 30-40%. It’s shown that proposed method allows to synthesize robot control in quasistatic mode for different movement types such as moving forward, sideways, walking on stairs, inclinations etc.Рассматривается задача синтеза управляемого движения шагающих роботов методом обратной задачи. Уравнения метода обратной задачи представляются с помощью методов динамики связанных систем тел, как уравнения движения свободных тел и уравнения связей. Введены различные группы уравнений связей — для задания походки робота, для выполнения условий устойчивости робота и для согласованного движения заданных звеньев робота. Ключевая особенность уравнений метода обратной задачи в такой постановке состоит в наличии вторых производных координат системы в уравнениях связей, обеспечивающих поддержание роботом вертикального положения. Однозначное решение таких уравнений в общем случае невозможно из-за неопределенности начальных условий для множителей Лагранжа. Рассмотрен приближенный метод решения обратной задачи без учета инерционных составляющих в уравнениях связей, определяющих устойчивость робота. Выписаны уравнения связей, которые определяют согласованное движение отдельных звеньев робота и необходимые для однозначного решения задачи на основе приближенных уравнений. Представлена реализация методов синтеза программного движения в системе управления робота андроида АР600. Выполнено сравнение теоретических и экспериментальных показателей управляемого движения. Установлено, что при достигнутой высокой точности управления следящими приводами относительными движениями звеньев робота с погрешностью несколько процентов, показатели абсолютных движений робота, в частности, углы крена, рыскания и тангажа, отличаются от программных на 30-40%. Показано, что предложенный метод позволяет синтезировать управление роботом в квазистатическом режиме для различных типов движений — вперед, вбок, движение по ступенькам, наклоны и так далее

    Особенности решения уравнений метода обратной задачи для синтеза устойчивого управляемого движения шагающих роботов

    Get PDF
    Рассматривается задача синтеза управляемого движения шагающих роботов методом обратной задачи. Уравнения метода обратной задачи представляются с помощью методов динамики связанных систем тел, как уравнения движения свободных тел и уравнения связей. Введены различные группы уравнений связей — для задания походки робота, для выполнения условий устойчивости робота и для согласованного движения заданных звеньев робота. Ключевая особенность уравнений метода обратной задачи в такой постановке состоит в наличии вторых производных координат системы в уравнениях связей, обеспечивающих поддержание роботом вертикального положения. Однозначное решение таких уравнений в общем случае невозможно из-за неопределенности начальных условий для множителей Лагранжа. Рассмотрен приближенный метод решения обратной задачи без учета инерционных составляющих в уравнениях связей, определяющих устойчивость робота. Выписаны уравнения связей, которые определяют согласованное движение отдельных звеньев робота и необходимые для однозначного решения задачи на основе приближенных уравнений. Представлена реализация методов синтеза программного движения в системе управления робота андроида АР600. Выполнено сравнение теоретических и экспериментальных показателей управляемого движения. Установлено, что при достигнутой высокой точности управления следящими приводами относительными движениями звеньев робота с погрешностью несколько процентов, показатели абсолютных движений робота, в частности, углы крена, рыскания и тангажа, отличаются от программных на 30-40%. Показано, что предложенный метод позволяет синтезировать управление роботом в квазистатическом режиме для различных типов движений — вперед, вбок, движение по ступенькам, наклоны и так далее

    Central Pattern Generator Inspired Control for Adaptive Walking of Biped Robots

    No full text
    corecore