1,212 research outputs found
Cellular senescence as a possible link between prostate diseases of the ageing male
Senescent cells accumulate with age in all tissues. Although senescent cells undergo cell-cycle arrest, these cells remain metabolically active and their secretome — known as the senescence-associated secretory phenotype — is responsible for a systemic pro-inflammatory state, which contributes to an inflammatory microenvironment. Senescent cells can be found in the ageing prostate and the senescence-associated secretory phenotype and can be linked to BPH and prostate cancer. Indeed, a number of signalling pathways provide biological plausibility for the role of senescence in both BPH and prostate cancer, although proving causality is difficult. The theory of senescence as a mechanism for prostate disease has a number of clinical implications and could offer opportunities for targeting in the future
The androgen receptor plays different roles in macrophage-induced proliferation in prostate stromal cells between transitional and peripheral zones of benign prostatic hypertrophy
Macrophages play a critical role in the process of excessive stromal proliferation of benign prostatic hyperplasia (BPH). In our previous study, we used a BPH mouse model to elucidate a potential mechanism whereby macrophage infiltration promotes stromal cell proliferation in the prostate via the androgen receptor (AR)/inflammatory cytokine CCL3-dependent pathway. In our present study, we used the co-culture system of human macrophages and various prostatic zone stromal cells to further demonstrate that infiltrating macrophages promote prostatic stromal cell proliferation through stromal AR-dependent pathways, and we show that the stroma of TZ and PZ respond to macrophages differently because of differences in stromal AR signaling; this could possibly be one of the key pathways for stromal expansion during BPH development and progression. We hypothesize that AR and different downstream inflammatory mediators between TZ and PZ could serve as potential targets for the future design of therapeutic agents for BPH and our results provide significant insights into the search for targeted therapeutic approaches to battle BPH
Immune Infiltration and Prostate Cancer
It is becoming increasingly clear that inflammation influences prostate cancer development and that immune cells are among the primary drivers of this effect. This information has launched numerous clinical trials testing immunotherapy drugs in prostate cancer patients. The results of these studies are promising but have yet to generate a complete response. Importantly, the precise immune profile that determines clinical outcome remains unresolved. Individual immune cell types are divided into various functional subsets whose effects on tumor development may differ depending on their particular phenotype and functional status, which is often shaped by the tumor microenvironment. Thus, this review aims to examine the current knowledge regarding the role of inflammation and specific immune cell types in mediating prostate cancer progression to assist in directing and optimizing immunotherapy targets, regimens and responses and to uncover areas in which further research is needed. Finally, a summary of ongoing immunotherapy clinical trials in prostate cancer is provided
Powerful Inhibition of Experimental Human Pancreatic Cancers by Receptor Targeted Cytotoxic LH-RH analog AEZS-108
The molecular and cellular origin of human prostate cancer
Prostate cancer is the most commonly diagnosed male malignancy. Despite compelling epidemiology, there are no definitive aetiological clues linking development to frequency. Pre-malignancies such as proliferative inflammatory atrophy (PIA) and prostatic intraepithelial neoplasia (PIN) yield insights into the initiating events of prostate cancer, as they supply a background "field" for further transformation. An inflammatory aetiology, linked to recurrent prostatitis, and heterologous signalling from reactive stroma and infiltrating immune cells may result in cytokine addiction of cancer cells, including a tumour-initiating population also known as cancer stem cells (CSCs). In prostate tumours, the background mutational rate is rarely exceeded, but genetic change via profound sporadic chromosomal rearrangements results in copy number variations and aberrant gene expression. In cancer, dysfunctional differentiation is imposed upon the normal epithelial lineage, with disruption/disappearance of the basement membrane, loss of the contiguous basal cell layer and expansion of the luminal population. An initiating role for androgen receptor (AR) is attractive, due to the luminal phenotype of the tumours, but alternatively a pool of CSCs, which express little or no AR, has also been demonstrated. Indolent and aggressive tumours may also arise from different stem or progenitor cells. Castrate resistant prostate cancer (CRPC) remains the inevitable final stage of disease following treatment. Time-limited effectiveness of second-generation anti-androgens, and the appearance of an AR-neuroendocrine phenotype imply that metastatic disease is reliant upon the plasticity of the CSC population, and indeed CSC gene expression profiles are most closely related to those identified in CRPCs
MicroRNAs and epithelial-mesenchymal transition in prostate cancer.
Prostate cancer (PCa) is a leading cause of male cancer-related deaths. A significant fraction of prostate tumors are very aggressive, often metastasizing to bone, causing significant morbidity and mortality. Also, PCa is associated with high rates of recurrence, often attributed to the existence of cancer stem cells. Epithelial-mesenchymal transition (EMT), a process characterized by decreased expression of epithelial genes and increased expression of mesenchymal genes, plays a critical role in tumor invasion, metastasis and recurrence. In PCa, EMT has been implicated particularly in the context of metastatic disease and microRNAs have emerged as critical post-transcriptional regulators of PCa EMT. In this review, we summarize the role of miRNAs in PCa EMT that play a role in progression, metastasis and recurrence. Studies till date suggest that microRNAs mediate efficient and reversible control of PCa EMT via multiple mechanisms including either by (i) directly repressing single or multiple EMT-TFs or regulating cytoskeletal components (epithelial/mesenchymal genes) or (ii) regulating key signaling pathways involved in EMT. Oncogenic microRNAs often act as EMT promoters by repressing epithelial characteristics and tumor suppressive miRNAs act by inhibiting mesenchymal progression. Further, EMT is mechanistically linked to stem cell signatures in PCa and several miRNAs implicated in EMT have been reported to influence PCa stem cells. Loss of EMT-inhibiting miRNAs and/or gain of EMT promoting miRNAs lead to induction of PCa EMT, leading to tumor progression, metastasis and recurrence. Restoring expression of tumor suppressive miRNAs and inhibiting oncogenic miRNAs represent potential therapeutic opportunities to prevent disease metastasis and recurrence
Benign prostatic hyperplasia in a 23 year old man with progeroid syndrome
Introduction: Progeroid syndromes are characterized by accelerated aging and early development of diseases typically associated with aging. Premature development of tumors including BPH, maybe observed in these patients, which can lead to significant bladder outlet obstruction.Observation: The index patient was a 23 year old man who presented to us with lower urinary tract symptoms (LUTS), features of obstructive nephropathy and was noticed to have been aging rapidly. He had features of premature aging, bilateral cataract and enlarged benign prostate (BPH). He eventually succumbed to obstructive nephropathy and urosepsis.Conclusion: Progeroid syndromes may be associated with premature development of obstructive BPH
Combined Spermacoce radiata and Hypselodelphys poggeana Extract (CESH) Protect against Oxidative Stress and Enhances Haematological Parameters in Benign Prostatic Hyperplasia-induced Rats
This study investigated the therapeutic effect of a combined extract of Spermacoce radiata and Hypselodelphys poggeana (CESH) on oxidative markers and haematological parameters in benign prostatic hyperplasia (BPH) induced rats. The study adopted five groups containing equal numbers of rats (n = 6), including normal control, BPH control, Finasteride control, BPH-induced rats treated with 200 mg/kg CESH, and BPH-induced rats treated with 600 mg/kg CESH. The rats were induced BPH by the subcutaneous administration of a 5 mg/kg testosterone propionate injection. At the same time, treatment finasteride and CESH to the respective groups were given orally 60 minutes after the BPH induction for 28 uninterrupted days. The induction of BPH with testosterone propionate injection caused a significant reduction in the serum levels of haematological parameters, including haemoglobin (Hb), packed cell volume (PCV), red blood cells (RBC), and platelet counts of the BPH control compared with normal control. The glutathione (GSH) concentration, glutathione peroxidase (GPx), superoxide dismutase (SOD), glutathione S-transferase, and catalase activities decreased significantly in the BPH control relative to the normal control. The BPH control had elevated white blood cell (WBC), and malondialdehyde (MDA) concentrations contrary to the high WBC and MDA in the normal control and CESH treated BPH induced rats, respectively. Conversely, the Hb, PCV, platelet count, GPx, SOD, catalase, GST, and GSH increased significantly in the finasteride and CESH-treated BPH-induced rats, respectively, compared to the BPH control. These findings show that CESH attenuates adverse effects of BPH on antioxidant parameters and oxidative markers, which may prevent BPH progression
Prostate tumor growth is impaired by CtBP1 depletion in high-fat diet-fed mice
Clinical and epidemiologic data suggest that obesity is associated with more aggressive forms of prostate cancer, poor prognosis, and increased mortality. C-terminal-binding protein 1 (CtBP1) is a transcription repressor of tumor suppressor genes and is activated by NADH binding. High calorie intake decreases intracellular NAD(+)/NADH ratio. The aim of this work was to assess the effect of high-fat diet (HFD) and CtBP1 expression modulation over prostate xenograft growth. We developed a metabolic syndrome-like disease in vivo model by feeding male nude mice with HFD during 16 weeks. Control diet (CD)-fed animals were maintained at the same conditions. Mice were inoculated with PC3 cells stable transfected with shCtBP1 or control plasmids. Genome-wide expression profiles and Gene Set Enrichment Analysis (GSEA) were performed from PC3.shCtBP1 versus PC3.pGIPZ HFD-fed mice tumors.Fil: Moiola, Cristian Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: de Luca, Paola. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; Argentina. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Química Biológica; ArgentinaFil: Zalazar, Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica; ArgentinaFil: Cotignola, Javier Hernan. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Rodríguez Seguí, Santiago Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Fisiología, Biología Molecular y Celular; ArgentinaFil: Gardner, Kevin. National Institutes of Health; Estados UnidosFil: Meissl, Roberto Jose. Academia Nacional de Medicina de Buenos Aires; ArgentinaFil: Vallecorsa, Pablo Daniel. Academia Nacional de Medicina de Buenos Aires; ArgentinaFil: Pignataro, Omar Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Mazza, Osvaldo. Universidad de Buenos Aires. Facultad de Medicina. Hospital de Clínicas General San Martín; ArgentinaFil: Vazquez, Elba Susana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: de Siervi, Adriana. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; Argentin
Low Temperature Plasma : A Novel Focal Therapy for Localized Prostate Cancer?
Despite considerable advances in recent years for the focal treatment of localized prostate cancer, high recurrence rates and detrimental side effects are still a cause for concern. In this review, we compare current focal therapies to a potentially novel approach for the treatment of early onset prostate cancer: low temperature plasma. The rapidly evolving plasma technology has the potential to deliver a wide range of promising medical applications via the delivery of plasma-induced reactive oxygen and nitrogen species. Studies assessing the effect of low temperature plasma on cell lines and xenografts have demonstrated DNA damage leading to apoptosis and reduction in cell viability. However, there have been no studies on prostate cancer, which is an obvious candidate for this novel therapy. We present here the potential of low temperature plasma as a focal therapy for prostate cancer
- …
