35 research outputs found

    Stochastic Ordering based Carrier-to-Interference Ratio Analysis for the Shotgun Cellular Systems

    Full text link
    A simple analytical tool based on stochastic ordering is developed to compare the distributions of carrier-to-interference ratio at the mobile station of two cellular systems where the base stations are distributed randomly according to certain non-homogeneous Poisson point processes. The comparison is conveniently done by studying only the base station densities without having to solve for the distributions of the carrier-to-interference ratio, that are often hard to obtain.Comment: 10 pages, 0 figures, submitted for review to IEEE Wireless Communications Letters on October 11, 201

    A Stochastic Geometry Approach to Energy Efficiency in Relay-Assisted Cellular Networks

    Full text link
    Though cooperative relaying is believed to be a promising technology to improve the energy efficiency of cellular networks, the relays' static power consumption might worsen the energy efficiency therefore can not be neglected. In this paper, we focus on whether and how the energy efficiency of cellular networks can be improved via relays. Based on the spatial Poisson point process, an analytical model is proposed to evaluate the energy efficiency of relay-assisted cellular networks. With the aid of the technical tools of stochastic geometry, we derive the distributions of signal-to-interference-plus-noise ratios (SINRs) and mean achievable rates of both non-cooperative users and cooperative users. The energy efficiency measured by "bps/Hz/W" is expressed subsequently. These established expressions are amenable to numerical evaluation and corroborated by simulation results.Comment: 6 pages, 5 figures, accepted by IEEE Globecom'12. arXiv admin note: text overlap with arXiv:1108.1257 by other author

    How user throughput depends on the traffic demand in large cellular networks

    Get PDF
    Little's law allows to express the mean user throughput in any region of the network as the ratio of the mean traffic demand to the steady-state mean number of users in this region. Corresponding statistics are usually collected in operational networks for each cell. Using ergodic arguments and Palm theoretic formalism, we show that the global mean user throughput in the network is equal to the ratio of these two means in the steady state of the "typical cell". Here, both means account for double averaging: over time and network geometry, and can be related to the per-surface traffic demand, base-station density and the spatial distribution of the SINR. This latter accounts for network irregularities, shadowing and idling cells via cell-load equations. We validate our approach comparing analytical and simulation results for Poisson network model to real-network cell-measurements

    Wireless networks appear Poissonian due to strong shadowing

    Get PDF
    Geographic locations of cellular base stations sometimes can be well fitted with spatial homogeneous Poisson point processes. In this paper we make a complementary observation: In the presence of the log-normal shadowing of sufficiently high variance, the statistics of the propagation loss of a single user with respect to different network stations are invariant with respect to their geographic positioning, whether regular or not, for a wide class of empirically homogeneous networks. Even in perfectly hexagonal case they appear as though they were realized in a Poisson network model, i.e., form an inhomogeneous Poisson point process on the positive half-line with a power-law density characterized by the path-loss exponent. At the same time, the conditional distances to the corresponding base stations, given their observed propagation losses, become independent and log-normally distributed, which can be seen as a decoupling between the real and model geometry. The result applies also to Suzuki (Rayleigh-log-normal) propagation model. We use Kolmogorov-Smirnov test to empirically study the quality of the Poisson approximation and use it to build a linear-regression method for the statistical estimation of the value of the path-loss exponent

    A Tractable Approach to Coverage and Rate in Cellular Networks

    Full text link
    Cellular networks are usually modeled by placing the base stations on a grid, with mobile users either randomly scattered or placed deterministically. These models have been used extensively but suffer from being both highly idealized and not very tractable, so complex system-level simulations are used to evaluate coverage/outage probability and rate. More tractable models have long been desirable. We develop new general models for the multi-cell signal-to-interference-plus-noise ratio (SINR) using stochastic geometry. Under very general assumptions, the resulting expressions for the downlink SINR CCDF (equivalent to the coverage probability) involve quickly computable integrals, and in some practical special cases can be simplified to common integrals (e.g., the Q-function) or even to simple closed-form expressions. We also derive the mean rate, and then the coverage gain (and mean rate loss) from static frequency reuse. We compare our coverage predictions to the grid model and an actual base station deployment, and observe that the proposed model is pessimistic (a lower bound on coverage) whereas the grid model is optimistic, and that both are about equally accurate. In addition to being more tractable, the proposed model may better capture the increasingly opportunistic and dense placement of base stations in future networks.Comment: Submitted to IEEE Transactions on Communication

    Outage Analysis of Uplink Two-tier Networks

    Full text link
    Employing multi-tier networks is among the most promising approaches to address the rapid growth of the data demand in cellular networks. In this paper, we study a two-tier uplink cellular network consisting of femtocells and a macrocell. Femto base stations, and femto and macro users are assumed to be spatially deployed based on independent Poisson point processes. We consider an open access assignment policy, where each macro user based on the ratio between its distances from its nearest femto access point (FAP) and from the macro base station (MBS) is assigned to either of them. By tuning the threshold, this policy allows controlling the coverage areas of FAPs. For a fixed threshold, femtocells coverage areas depend on their distances from the MBS; Those closest to the fringes will have the largest coverage areas. Under this open-access policy, ignoring the additive noise, we derive analytical upper and lower bounds on the outage probabilities of femto users and macro users that are subject to fading and path loss. We also study the effect of the distance from the MBS on the outage probability experienced by the users of a femtocell. In all cases, our simulation results comply with our analytical bounds
    corecore