261 research outputs found

    Cellular automata segmentation of brain tumors on post contrast MR images

    Get PDF
    In this paper, we re-examine the cellular automata(CA) al- gorithm to show that the result of its state evolution converges to that of the shortest path algorithm. We proposed a complete tumor segmenta- tion method on post contrast T1 MR images, which standardizes the VOI and seed selection, uses CA transition rules adapted to the problem and evolves a level set surface on CA states to impose spatial smoothness. Val- idation studies on 13 clinical and 5 synthetic brain tumors demonstrated the proposed algorithm outperforms graph cut and grow cut algorithms in all cases with a lower sensitivity to initialization and tumor type

    Brain Tumor Segmentation Techniques: A Review

    Get PDF
    Image processing is used widely in solving a variety of problems. The important and complex phase of image processing is image segmentation. This paper provides a brief description on some of the segmentation algorithms specifically on brain tumor MR Images. Later in this paper, simple comparisons are made between the listed algorithms. This work helps in understanding some of the existing brain MR Image segmentation algorithms better

    Image analysis methods for brain tumor treatment follow-up

    Get PDF
    Assessment of the progression of the tumors in current clinical practice is based on maximum diameter measurements, which are related to the volumetric changes. With the advent of the spatially localized radiotherapy techniques (i.e. Cyberknife, IMRT, Gammaknife, Tomotherapy) not only the volumes of the tumors but also the geometric changes need to be considered to measure the effectiveness and to improve the applied therapy. In this thesis, image analysis techniques are developed for assessment of the changes of the tumor geometry between MRI volumes acquired after and before the therapy. Three main parts of the thesis are: Segmentation of brain tumors on MRI; change quantification in temporal MRI series of brain tumors; and deformable registration of brain MRI volumes with tumors. The results obtained by the developed semi-automatic brain tumor segmentation method, Tumor-cut, are comparable with those of state-of-the-art techniques in the field. The quantification of tumor evolution using the invariants of the Lagrange strain tensor provide measures that are more correlated with the clinical outcome than the volumetric measures. The deformable registration of longitudinal data provides a novel framework to study brain deformations, in vivo, and more accurate assessment of the changes

    Interactive Medical Image Segmentation using Deep Learning with Image-specific Fine-tuning

    Get PDF
    Convolutional neural networks (CNNs) have achieved state-of-the-art performance for automatic medical image segmentation. However, they have not demonstrated sufficiently accurate and robust results for clinical use. In addition, they are limited by the lack of image-specific adaptation and the lack of generalizability to previously unseen object classes. To address these problems, we propose a novel deep learning-based framework for interactive segmentation by incorporating CNNs into a bounding box and scribble-based segmentation pipeline. We propose image-specific fine-tuning to make a CNN model adaptive to a specific test image, which can be either unsupervised (without additional user interactions) or supervised (with additional scribbles). We also propose a weighted loss function considering network and interaction-based uncertainty for the fine-tuning. We applied this framework to two applications: 2D segmentation of multiple organs from fetal MR slices, where only two types of these organs were annotated for training; and 3D segmentation of brain tumor core (excluding edema) and whole brain tumor (including edema) from different MR sequences, where only tumor cores in one MR sequence were annotated for training. Experimental results show that 1) our model is more robust to segment previously unseen objects than state-of-the-art CNNs; 2) image-specific fine-tuning with the proposed weighted loss function significantly improves segmentation accuracy; and 3) our method leads to accurate results with fewer user interactions and less user time than traditional interactive segmentation methods.Comment: 11 pages, 11 figure

    Lattice-gas cellular automata for the analysis of cancer invasion

    Get PDF
    Cancer cells display characteristic traits acquired in a step-wise manner during carcinogenesis. Some of these traits are autonomous growth, induction of angiogenesis, invasion and metastasis. In this thesis, the focus is on one of the latest stages of tumor progression, tumor invasion. Tumor invasion emerges from the combined effect of tumor cell-cell and cell-microenvironment interactions, which can be studied with the help of mathematical analysis. Cellular automata (CA) can be viewed as simple models of self-organizing complex systems in which collective behavior can emerge out of an ensemble of many interacting "simple" components. In particular, we focus on an important class of CA, the so-called lattice-gas cellular automata (LGCA). In contrast to traditional CA, LGCA provide a straightforward and intuitive implementation of particle transport and interactions. Additionally, the structure of LGCA facilitates the mathematical analysis of their behavior. Here, the principal tools of mathematical analysis of LGCA are the mean-field approximation and the corresponding Lattice Boltzmann equation. The main objective of this thesis is to investigate important aspects of tumor invasion, under the microscope of mathematical modeling and analysis: Impact of the tumor environment: We introduce a LGCA as a microscopic model of tumor cell migration together with a mathematical description of different tumor environments. We study the impact of the various tumor environments (such as extracellular matrix) on tumor cell migration by estimating the tumor cell dispersion speed for a given environment. Effect of tumor cell proliferation and migration: We study the effect of tumor cell proliferation and migration on the tumor’s invasive behavior by developing a simplified LGCA model of tumor growth. In particular, we derive the corresponding macroscopic dynamics and we calculate the tumor’s invasion speed in terms of tumor cell proliferation and migration rates. Moreover, we calculate the width of the invasive zone, where the majority of mitotic activity is concentrated, and it is found to be proportional to the invasion speed. Mechanisms of tumor invasion emergence: We investigate the mechanisms for the emergence of tumor invasion in the course of cancer progression. We conclude that the response of a microscopic intracellular mechanism (migration/proliferation dichotomy) to oxygen shortage, i.e. hypoxia, maybe responsible for the transition from a benign (proliferative) to a malignant (invasive) tumor. Computing in vivo tumor invasion: Finally, we propose an evolutionary algorithm that estimates the parameters of a tumor growth LGCA model based on time-series of patient medical data (in particular Magnetic Resonance and Diffusion Tensor Imaging data). These parameters may allow to reproduce clinically relevant tumor growth scenarios for a specific patient, providing a prediction of the tumor growth at a later time stage.Krebszellen zeigen charakteristische Merkmale, die sie in einem schrittweisen Vorgang während der Karzinogenese erworben haben. Einige dieser Merkmale sind autonomes Wachstum, die Induktion von Angiogenese, Invasion und Metastasis. Der Schwerpunkt dieser Arbeit liegt auf der Tumorinvasion, einer der letzten Phasen der Tumorprogression. Die Tumorinvasion ensteht aus der kombinierten Wirkung von den Wechselwirkungen Tumorzelle-Zelle und Zelle-Mikroumgebung, die mit die Hilfe von mathematischer Analyse untersucht werden können. Zelluläre Automaten (CA) können als einfache Modelle von selbst-organisierenden komplexen Systemen betrachtet werden, in denen kollektives Verhalten aus einer Kombination von vielen interagierenden "einfachen" Komponenten entstehen kann. Insbesondere konzentrieren wir uns auf eine wichtige CA-Klasse, die sogenannten Zelluläre Gitter-Gas Automaten (LGCA). Im Gegensatz zu traditionellen CA bieten LGCA eine einfache und intuitive Umsetzung der Teilchen und Wechselwirkungen. Zusätzlich erleichtert die Struktur der LGCA die mathematische Analyse ihres Verhaltens. Die wichtigsten Werkzeuge der mathematischen Analyse der LGCA sind hier die Mean-field Approximation und die entsprechende Lattice - Boltzmann - Gleichung. Das wichtigste Ziel dieser Arbeit ist es, wichtige Aspekte der Tumorinvasion unter dem Mikroskop der mathematischen Modellierung und Analyse zu erforschen: Auswirkungen der Tumorumgebung: Wir stellen einen LGCA als mikroskopisches Modell der Tumorzellen-Migration in Verbindung mit einer mathematischen Beschreibung der verschiedenen Tumorumgebungen vor. Wir untersuchen die Auswirkungen der verschiedenen Tumorumgebungen (z. B. extrazellulären Matrix) auf die Migration von Tumorzellen dürch Schätzung der Tumorzellen-Dispersionsgeschwindigkeit in einem gegebenen Umfeld. Wirkung von Tumor-Zellenproliferation und Migration: Wir untersuchen die Wirkung von Tumorzellenproliferation und Migration auf das invasive Verhalten der Tumorzellen durch die Entwicklung eines vereinfachten LGCA Tumorwachstumsmodells. Wir leiten die entsprechende makroskopische Dynamik und berechnen die Tumorinvasionsgeschwindigkeit im Hinblick auf die Tumorzellenproliferation- und Migrationswerte. Darüber hinaus berechnen wir die Breite der invasiven Zone, wo die Mehrheit der mitotischer Aktivität konzentriert ist, und es wird festgestellt, dass diese proportional zu den Invasionsgeschwindigkeit ist. Mechanismen der Tumorinvasion Entstehung: Wir untersuchen Mechanismen, die für die Entstehung von Tumorinvasion im Verlauf des Krebs zuständig sind. Wir kommen zu dem Schluss, dass die Reaktion eines mikroskopischen intrazellulären Mechanismus (Migration/Proliferation Dichotomie) zu Sauerstoffmangel, d.h. Hypoxie, möglicheweise für den Übergang von einem gutartigen (proliferative) zu einer bösartigen (invasive) Tumor verantwortlich ist. Berechnung der in-vivo Tumorinvasion: Schließlich schlagen wir einen evolutionären Algorithmus vor, der die Parameter eines LGCA Modells von Tumorwachstum auf der Grundlage von medizinischen Daten des Patienten für mehrere Zeitpunkte (insbesondere die Magnet-Resonanz-und Diffusion Tensor Imaging Daten) ermöglicht. Diese Parameter erlauben Szenarien für einen klinisch relevanten Tumorwachstum für einen bestimmten Patienten zu reproduzieren, die eine Vorhersage des Tumorwachstums zu einem späteren Zeitpunkt möglich machen

    Modified Tumour Cut Algorithms For MRI Image Segmentation of Brain Tumours

    Get PDF
    Abstract-The brain tumour segmentation methods rely on the intensity enhancement. Among them, a clustering method have been investigated and used. In this paper, CA (Cellular Automata) based seeded tumour segmentation algorithm is proposed. Which determine the Volume of Interest (VOI) and seed selection. First, establish the connection of the CA-based segmentation to the graph-cut method to show that the iterative CA framework solves the shortest path problem. This paper describe segmentation method consist of two phases. In the first phase, the MR Image is acquired from patient database and contrast enhancing the image. In the second phase, the CA algorithm run twice for background seed (healthy cell) and foreground seed (tumour cell) for probability calculation. Furthermore, apply Graph-Cut (GC) method to differentiate necrotic and enhancing tumour tissue content, which gains importance for a detailed assessment of radiation therapy response

    A generative approach for image-based modeling of tumor growth

    Get PDF
    22nd International Conference, IPMI 2011, Kloster Irsee, Germany, July 3-8, 2011. ProceedingsExtensive imaging is routinely used in brain tumor patients to monitor the state of the disease and to evaluate therapeutic options. A large number of multi-modal and multi-temporal image volumes is acquired in standard clinical cases, requiring new approaches for comprehensive integration of information from different image sources and different time points. In this work we propose a joint generative model of tumor growth and of image observation that naturally handles multi-modal and longitudinal data. We use the model for analyzing imaging data in patients with glioma. The tumor growth model is based on a reaction-diffusion framework. Model personalization relies only on a forward model for the growth process and on image likelihood. We take advantage of an adaptive sparse grid approximation for efficient inference via Markov Chain Monte Carlo sampling. The approach can be used for integrating information from different multi-modal imaging protocols and can easily be adapted to other tumor growth models.German Academy of Sciences Leopoldina (Fellowship Programme LPDS 2009-10)Academy of Finland (133611)National Institutes of Health (U.S.) (NIBIB NAMIC U54-EB005149)National Institutes of Health (U.S.) (NCRR NAC P41- RR13218)National Institutes of Health (U.S.) (NINDS R01-NS051826)National Institutes of Health (U.S.) (NIH R01-NS052585)National Institutes of Health (U.S.) (NIH R01-EB006758)National Institutes of Health (U.S.) (NIH R01-EB009051)National Institutes of Health (U.S.) (NIH P41-RR014075)National Science Foundation (U.S.) (CAREER Award 0642971

    Longitudinal Brain Tumor Tracking, Tumor Grading, and Patient Survival Prediction Using MRI

    Get PDF
    This work aims to develop novel methods for brain tumor classification, longitudinal brain tumor tracking, and patient survival prediction. Consequently, this dissertation proposes three tasks. First, we develop a framework for brain tumor segmentation prediction in longitudinal multimodal magnetic resonance imaging (mMRI) scans, comprising two methods: feature fusion and joint label fusion (JLF). The first method fuses stochastic multi-resolution texture features with tumor cell density features, in order to obtain tumor segmentation predictions in follow-up scans from a baseline pre-operative timepoint. The second method utilizes JLF to combine segmentation labels obtained from (i) the stochastic texture feature-based and Random Forest (RF)-based tumor segmentation method; and (ii) another state-of-the-art tumor growth and segmentation method known as boosted Glioma Image Segmentation and Registration (GLISTRboost, or GB). With the advantages of feature fusion and label fusion, we achieve state-of-the-art brain tumor segmentation prediction. Second, we propose a deep neural network (DNN) learning-based method for brain tumor type and subtype grading using phenotypic and genotypic data, following the World Health Organization (WHO) criteria. In addition, the classification method integrates a cellularity feature which is derived from the morphology of a pathology image to improve classification performance. The proposed method achieves state-of-the-art performance for tumor grading following the new CNS tumor grading criteria. Finally, we investigate brain tumor volume segmentation, tumor subtype classification, and overall patient survival prediction, and then we propose a new context- aware deep learning method, known as the Context Aware Convolutional Neural Network (CANet). Using the proposed method, we participated in the Multimodal Brain Tumor Segmentation Challenge 2019 (BraTS 2019) for brain tumor volume segmentation and overall survival prediction tasks. In addition, we also participated in the Radiology-Pathology Challenge 2019 (CPM-RadPath 2019) for Brain Tumor Subtype Classification, organized by the Medical Image Computing & Computer Assisted Intervention (MICCAI) Society. The online evaluation results show that the proposed methods offer competitive performance from their use of state-of-the-art methods in tumor volume segmentation, promising performance on overall survival prediction, and state-of-the-art performance on tumor subtype classification. Moreover, our result was ranked second place in the testing phase of the CPM-RadPath 2019
    corecore