665 research outputs found

    TDMA Achieves the Optimal Diversity Gain in Relay-Assisted Cellular Networks

    Full text link
    In multi-access wireless networks, transmission scheduling is a key component that determines the efficiency and fairness of wireless spectrum allocation. At one extreme, greedy opportunistic scheduling that allocates airtime to the user with the largest instantaneous channel gain achieves the optimal spectrum efficiency and transmission reliability but the poorest user-level fairness. At the other extreme, fixed TDMA scheduling achieves the fairest airtime allocation but the lowest spectrum efficiency and transmission reliability. To balance the two competing objectives, extensive research efforts have been spent on designing opportunistic scheduling schemes that reach certain tradeoff points between the two extremes. In this paper and in contrast to the conventional wisdom, we find that in relay-assisted cellular networks, fixed TDMA achieves the same optimal diversity gain as greedy opportunistic scheduling. In addition, by incorporating very limited opportunism, a simple relaxed-TDMA scheme asymptotically achieves the same optimal system reliability in terms of outage probability as greedy opportunistic scheduling. This reveals a surprising fact: transmission reliability and user fairness are no longer contradicting each other in relay-assisted systems. They can be both achieved by the simple TDMA schemes. For practical implementations, we further propose a fully distributed algorithm to implement the relaxed-TDMA scheme. Our results here may find applications in the design of next-generation wireless communication systems with relay architectures such as LTE-advanced and WiMAX.Comment: 26 pages, 8 figure

    Harvest the potential of massive MIMO with multi-layer techniques

    Full text link
    Massive MIMO is envisioned as a promising technology for 5G wireless networks due to its high potential to improve both spectral and energy efficiency. Although the massive MIMO system is based on innovations in the physical layer, the upper layer techniques also play important roles in harvesting the performance gains of massive MIMO. In this article, we begin with an analysis of the benefits and challenges of massive MIMO systems. We then investigate the multi-layer techniques for incorporating massive MIMO in several important network deployment scenarios. We conclude this article with a discussion of open and potential problems for future research.Comment: IEEE Networ

    Joint User Grouping and Linear Virtual Beamforming: Complexity, Algorithms and Approximation Bounds

    Full text link
    In a wireless system with a large number of distributed nodes, the quality of communication can be greatly improved by pooling the nodes to perform joint transmission/reception. In this paper, we consider the problem of optimally selecting a subset of nodes from potentially a large number of candidates to form a virtual multi-antenna system, while at the same time designing their joint linear transmission strategies. We focus on two specific application scenarios: 1) multiple single antenna transmitters cooperatively transmit to a receiver; 2) a single transmitter transmits to a receiver with the help of a number of cooperative relays. We formulate the joint node selection and beamforming problems as cardinality constrained optimization problems with both discrete variables (used for selecting cooperative nodes) and continuous variables (used for designing beamformers). For each application scenario, we first characterize the computational complexity of the joint optimization problem, and then propose novel semi-definite relaxation (SDR) techniques to obtain approximate solutions. We show that the new SDR algorithms have a guaranteed approximation performance in terms of the gap to global optimality, regardless of channel realizations. The effectiveness of the proposed algorithms is demonstrated via numerical experiments.Comment: To appear, JSAC special issue on virtual antenna system

    KPI/KQI-Driven Coordinated Multi-Point in 5G: Measurements, Field Trials, and Technical Solutions

    Full text link
    The fifth generation (5G) systems are expected to be able to support massive number of wireless devices and intense demands for high data rates while maintaining low latency. Coordinated multipoint (CoMP) is advocated by recent advances and is envisioned to continue its adoption in 5G to meet these requirements by alleviating inter-cell interference and improving spectral efficiency. The higher requirements in 5G have raised the stakes on developing a new CoMP architecture. To understand the merits and limitations of CoMP in 5G, this article systematically investigates evaluation criteria including key performance indicators (KPIs) and key quality indicators (KQIs) in 5G, conducts empirical measurements and field tests, and then proposes a KPI/KQI-driven CoMP architecture that fulfills KPI requirements and provides KQI guarantee for each user

    A Stochastic Analysis of Network MIMO Systems

    Full text link
    This paper quantifies the benefits and limitations of cooperative communications by providing a statistical analysis of the downlink in network multiple-input multiple-output (MIMO) systems. We consider an idealized model where the multiple-antenna base-stations (BSs) are distributed according to a homogeneous Poisson point process and cooperate by forming disjoint clusters. We assume that perfect channel state information (CSI) is available at the cooperating BSs without any overhead. Multiple single-antenna users are served using zero-forcing beamforming with equal power allocation across the beams. For such a system, we obtain tractable, but accurate, approximations of the signal power and inter-cluster interference power distributions and derive a computationally efficient expression for the achievable per-BS ergodic sum rate using tools from stochastic geometry. This expression allows us to obtain the optimal loading factor, i.e., the ratio between the number of scheduled users and the number of BS antennas, that maximizes the per-BS ergodic sum rate. Further, it allows us to quantify the performance improvement of network MIMO systems as a function of the cooperating cluster size. We show that to perform zero-forcing across the distributed set of BSs within the cluster, the network MIMO system introduces a penalty in received signal power. Along with the inevitable out-of-cluster interference, we show that the per-BS ergodic sum rate of a network MIMO system does not approach that of an isolated cell even at unrealistically large cluster sizes. Nevertheless, network MIMO does provide significant rate improvement as compared to uncoordinated single-cell processing even at relatively modest cluster sizes.Comment: Accepted for publication at IEEE Transactions on Signal Processin

    A Survey on Non-Orthogonal Multiple Access for 5G Networks: Research Challenges and Future Trends

    Full text link
    Non-orthogonal multiple access (NOMA) is an essential enabling technology for the fifth generation (5G) wireless networks to meet the heterogeneous demands on low latency, high reliability, massive connectivity, improved fairness, and high throughput. The key idea behind NOMA is to serve multiple users in the same resource block, such as a time slot, subcarrier, or spreading code. The NOMA principle is a general framework, and several recently proposed 5G multiple access schemes can be viewed as special cases. This survey provides an overview of the latest NOMA research and innovations as well as their applications. Thereby, the papers published in this special issue are put into the content of the existing literature. Future research challenges regarding NOMA in 5G and beyond are also discussed.Comment: to appear in IEEE JSAC, 201

    Recent Advances in Cloud Radio Access Networks: System Architectures, Key Techniques, and Open Issues

    Full text link
    As a promising paradigm to reduce both capital and operating expenditures, the cloud radio access network (C-RAN) has been shown to provide high spectral efficiency and energy efficiency. Motivated by its significant theoretical performance gains and potential advantages, C-RANs have been advocated by both the industry and research community. This paper comprehensively surveys the recent advances of C-RANs, including system architectures, key techniques, and open issues. The system architectures with different functional splits and the corresponding characteristics are comprehensively summarized and discussed. The state-of-the-art key techniques in C-RANs are classified as: the fronthaul compression, large-scale collaborative processing, and channel estimation in the physical layer; and the radio resource allocation and optimization in the upper layer. Additionally, given the extensiveness of the research area, open issues and challenges are presented to spur future investigations, in which the involvement of edge cache, big data mining, social-aware device-to-device, cognitive radio, software defined network, and physical layer security for C-RANs are discussed, and the progress of testbed development and trial test are introduced as well.Comment: 27 pages, 11 figure

    A Survey of Millimeter Wave (mmWave) Communications for 5G: Opportunities and Challenges

    Full text link
    With the explosive growth of mobile data demand, the fifth generation (5G) mobile network would exploit the enormous amount of spectrum in the millimeter wave (mmWave) bands to greatly increase communication capacity. There are fundamental differences between mmWave communications and existing other communication systems, in terms of high propagation loss, directivity, and sensitivity to blockage. These characteristics of mmWave communications pose several challenges to fully exploit the potential of mmWave communications, including integrated circuits and system design, interference management, spatial reuse, anti-blockage, and dynamics control. To address these challenges, we carry out a survey of existing solutions and standards, and propose design guidelines in architectures and protocols for mmWave communications. We also discuss the potential applications of mmWave communications in the 5G network, including the small cell access, the cellular access, and the wireless backhaul. Finally, we discuss relevant open research issues including the new physical layer technology, software-defined network architecture, measurements of network state information, efficient control mechanisms, and heterogeneous networking, which should be further investigated to facilitate the deployment of mmWave communication systems in the future 5G networks.Comment: 17 pages, 8 figures, 7 tables, Journal pape

    Multi-Beam NOMA for Hybrid mmWave Systems

    Full text link
    In this paper, we propose a multi-beam non-orthogonal multiple access (NOMA) scheme for hybrid millimeter wave (mmWave) systems and study its resource allocation. A beam splitting technique is designed to generate multiple analog beams to serve multiple users for NOMA transmission. Compared to conventional mmWave orthogonal multiple access (mmWave-OMA) schemes, the proposed scheme can serve more than one user on each radio frequency (RF) chain. Besides, in contrast to the recently proposed single-beam mmWave-NOMA scheme which can only serve multiple NOMA users within the same beam, the proposed scheme can perform NOMA transmission for the users with an arbitrary angle-of-departure (AOD) distribution. This provides a higher flexibility for applying NOMA in mmWave communications and thus can efficiently exploit the potential multi-user diversity. Then, we design a suboptimal two-stage resource allocation for maximizing the system sum-rate. In the first stage, assuming that only analog beamforming is available, a user grouping and antenna allocation algorithm is proposed to maximize the conditional system sum-rate based on the coalition formation game theory. In the second stage, with the zero-forcing (ZF) digital precoder, a suboptimal solution is devised to solve a non-convex power allocation optimization problem for the maximization of the system sum-rate which takes into account the quality of service (QoS) constraint. Simulation results show that our designed resource allocation can achieve a close-to-optimal performance in each stage. In addition, we demonstrate that the proposed multi-beam mmWave-NOMA scheme offers a higher spectral efficiency than that of the single-beam mmWave-NOMA and the mmWave-OMA schemes.Comment: Submitted for possible journal publicatio

    Large-scale Antenna Operation in Heterogeneous Cloud Radio Access Networks: A Partial Centralization Approach

    Full text link
    To satisfy the ever-increasing capacity demand and quality of service (QoS) requirements of users, 5G cellular systems will take the form of heterogeneous networks (HetNets) that consist of macro cells and small cells. To build and operate such systems, mobile operators have given significant attention to cloud radio access networks (C-RANs) due to their beneficial features of performance optimization and cost effectiveness. Along with the architectural enhancement of C-RAN, large-scale antennas (a.k.a. massive MIMO) at cell sites contribute greatly to increased network capacity either with higher spectral efficiency or through permitting many users at once. In this article, we discuss the challenging issues of C-RAN based HetNets (H-CRAN), especially with respect to large-scale antenna operation. We provide an overview of existing C-RAN architectures in terms of large-scale antenna operation and promote a partially centralized approach. This approach reduces, remarkably, fronthaul overheads in CRANs with large-scale antennas. We also provide some insights into its potential and applicability in the fronthaul bandwidthlimited H-CRAN with large-scale antennas.Comment: To appear in IEEE Wireless Communications Magazine June 201
    • …
    corecore