9,480 research outputs found
Ubiquitous Cell-Free Massive MIMO Communications
Since the first cellular networks were trialled in the 1970s, we have
witnessed an incredible wireless revolution. From 1G to 4G, the massive traffic
growth has been managed by a combination of wider bandwidths, refined radio
interfaces, and network densification, namely increasing the number of antennas
per site. Due its cost-efficiency, the latter has contributed the most. Massive
MIMO (multiple-input multiple-output) is a key 5G technology that uses massive
antenna arrays to provide a very high beamforming gain and spatially
multiplexing of users, and hence, increases the spectral and energy efficiency.
It constitutes a centralized solution to densify a network, and its performance
is limited by the inter-cell interference inherent in its cell-centric design.
Conversely, ubiquitous cell-free Massive MIMO refers to a distributed Massive
MIMO system implementing coherent user-centric transmission to overcome the
inter-cell interference limitation in cellular networks and provide additional
macro-diversity. These features, combined with the system scalability inherent
in the Massive MIMO design, distinguishes ubiquitous cell-free Massive MIMO
from prior coordinated distributed wireless systems. In this article, we
investigate the enormous potential of this promising technology while
addressing practical deployment issues to deal with the increased
back/front-hauling overhead deriving from the signal co-processing.Comment: Published in EURASIP Journal on Wireless Communications and
Networking on August 5, 201
Cell-Free Massive MIMO versus Small Cells
A Cell-Free Massive MIMO (multiple-input multiple-output) system comprises a
very large number of distributed access points (APs)which simultaneously serve
a much smaller number of users over the same time/frequency resources based on
directly measured channel characteristics. The APs and users have only one
antenna each. The APs acquire channel state information through time-division
duplex operation and the reception of uplink pilot signals transmitted by the
users. The APs perform multiplexing/de-multiplexing through conjugate
beamforming on the downlink and matched filtering on the uplink. Closed-form
expressions for individual user uplink and downlink throughputs lead to max-min
power control algorithms. Max-min power control ensures uniformly good service
throughout the area of coverage. A pilot assignment algorithm helps to mitigate
the effects of pilot contamination, but power control is far more important in
that regard.
Cell-Free Massive MIMO has considerably improved performance with respect to
a conventional small-cell scheme, whereby each user is served by a dedicated
AP, in terms of both 95%-likely per-user throughput and immunity to shadow
fading spatial correlation. Under uncorrelated shadow fading conditions, the
cell-free scheme provides nearly 5-fold improvement in 95%-likely per-user
throughput over the small-cell scheme, and 10-fold improvement when shadow
fading is correlated.Comment: EEE Transactions on Wireless Communications, accepted for publicatio
On the Total Energy Efficiency of Cell-Free Massive MIMO
We consider the cell-free massive multiple-input multiple-output (MIMO)
downlink, where a very large number of distributed multiple-antenna access
points (APs) serve many single-antenna users in the same time-frequency
resource. A simple (distributed) conjugate beamforming scheme is applied at
each AP via the use of local channel state information (CSI). This CSI is
acquired through time-division duplex operation and the reception of uplink
training signals transmitted by the users. We derive a closed-form expression
for the spectral efficiency taking into account the effects of channel
estimation errors and power control. This closed-form result enables us to
analyze the effects of backhaul power consumption, the number of APs, and the
number of antennas per AP on the total energy efficiency, as well as, to design
an optimal power allocation algorithm. The optimal power allocation algorithm
aims at maximizing the total energy efficiency, subject to a per-user spectral
efficiency constraint and a per-AP power constraint. Compared with the equal
power control, our proposed power allocation scheme can double the total energy
efficiency. Furthermore, we propose AP selections schemes, in which each user
chooses a subset of APs, to reduce the power consumption caused by the backhaul
links. With our proposed AP selection schemes, the total energy efficiency
increases significantly, especially for large numbers of APs. Moreover, under a
requirement of good quality-of-service for all users, cell-free massive MIMO
outperforms the colocated counterpart in terms of energy efficiency
How Much Do Downlink Pilots Improve Cell-Free Massive MIMO?
In this paper, we analyze the benefits of including downlink pilots in a
cell-free massive MIMO system. We derive an approximate per-user achievable
downlink rate for conjugate beamforming processing, which takes into account
both uplink and downlink channel estimation errors, and power control. A
performance comparison is carried out, in terms of per-user net throughput,
considering cell-free massive MIMO operation with and without downlink
training, for different network densities. We take also into account the
performance improvement provided by max-min fairness power control in the
downlink. Numerical results show that, exploiting downlink pilots, the
performance can be considerably improved in low density networks over the
conventional scheme where the users rely on statistical channel knowledge only.
In high density networks, performance improvements are moderate.Comment: 7 pages, 5 figures. IEEE Global Communications Conference 2016
(GLOBECOM). Accepte
Downlink Spectral Efficiency of Cell-Free Massive MIMO with Full-Pilot Zero-Forcing
Cell-free Massive multiple-input multiple-output (MIMO) ensures ubiquitous
communication at high spectral efficiency (SE) thanks to increased
macro-diversity as compared cellular communications. However, system
scalability and performance are limited by fronthauling traffic and
interference. Unlike conventional precoding schemes that only suppress
intra-cell interference, full-pilot zero-forcing (fpZF), introduced in [1],
actively suppresses also inter-cell interference, without sharing channel state
information (CSI) among the access points (APs). In this study, we derive a new
closed-form expression for the downlink (DL) SE of a cell-free Massive MIMO
system with multi-antenna APs and fpZF precoding, under imperfect CSI and pilot
contamination. The analysis also includes max-min fairness DL power
optimization. Numerical results show that fpZF significantly outperforms
maximum ratio transmission scheme, without increasing the fronthauling
overhead, as long as the system is sufficiently distributed.Comment: Paper published in 2018 IEEE Global Conference on Signal and
Information Processing (GlobalSIP). {\copyright} 2019 IEEE. Personal use of
this material is permitted. Permission from IEEE must be obtained for all
other use
Performance Analysis of Cell-Free Massive MIMO Systems: A Stochastic Geometry Approach
© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Cell-free (CF) massive multiple-input-multiple-output (MIMO) has emerged as an alternative deployment for conventional cellular massive MIMO networks. As revealed by its name, this topology considers no cells, while a large number of multi-antenna access points (APs) serves simultaneously a smaller number of users over the same time/frequency resources through time-division duplex (TDD) operation. Prior works relied on the strong assumption (quite idealized) that the APs are uniformly distributed, and actually, this randomness was considered during the simulation and not in the analysis. However, in practice, ongoing and future networks become denser and increasingly irregular. Having this in mind, we consider that the AP locations are modeled by means of a Poisson point process (PPP) which is a more realistic model for the spatial randomness than a grid or uniform deployment. In particular, by virtue of stochastic geometry tools, we derive both the downlink coverage probability and achievable rate. Notably, this is the only work providing the coverage probability and shedding light on this aspect of CF massive MIMO systems. Focusing on the extraction of interesting insights, we consider small-cells (SCs) as a benchmark for comparison. Among the findings, CF massive MIMO systems achieve both higher coverage and rate with comparison to SCs due to the properties of favorable propagation, channel hardening, and interference suppression. Especially, we showed for both architectures that increasing the AP density results in a higher coverage which saturates after a certain value and increasing the number of users decreases the achievable rate but CF massive MIMO systems take advantage of the aforementioned properties, and thus, outperform SCs. In general, the performance gap between CF massive MIMO systems and SCs is enhanced by increasing the AP density. Another interesting observation concerns that a higher path-loss exponent decreases the rate while the users closer to the APs affect more the performance in terms of the rate.Peer reviewe
- …
