2,460 research outputs found

    Green Cellular Networks: A Survey, Some Research Issues and Challenges

    Full text link
    Energy efficiency in cellular networks is a growing concern for cellular operators to not only maintain profitability, but also to reduce the overall environment effects. This emerging trend of achieving energy efficiency in cellular networks is motivating the standardization authorities and network operators to continuously explore future technologies in order to bring improvements in the entire network infrastructure. In this article, we present a brief survey of methods to improve the power efficiency of cellular networks, explore some research issues and challenges and suggest some techniques to enable an energy efficient or "green" cellular network. Since base stations consume a maximum portion of the total energy used in a cellular system, we will first provide a comprehensive survey on techniques to obtain energy savings in base stations. Next, we discuss how heterogeneous network deployment based on micro, pico and femto-cells can be used to achieve this goal. Since cognitive radio and cooperative relaying are undisputed future technologies in this regard, we propose a research vision to make these technologies more energy efficient. Lastly, we explore some broader perspectives in realizing a "green" cellular network technologyComment: 16 pages, 5 figures, 2 table

    Energy Efficient Relay-Assisted Cellular Network Model using Base Station Switching

    Get PDF
    Cellular network planning strategies have tended to focus on peak traffic scenarios rather than energy efficiency. By exploiting the dynamic nature of traffic load profiles, the prospect for greener communications in cellular access networks is evolving. For example, powering down base stations (BS) and applying cell zooming can significantly reduce energy consumption, with the overriding design priority still being to uphold a minimum quality of service (QoS). Switching off cells completely can lead to both coverage holes and performance degradation in terms of increased outage probability, greater transmit power dissipation in the up and downlinks, and complex interference management, even at low traffic loads. In this paper, a cellular network model is presented where certain BS rather than being turned off, are switched to low-powered relay stations (RS) during zero-to-medium traffic periods. Neighbouring BS still retain all the baseband signal processing and transmit signals to corresponding RS via backhaul connections, under the assumption that the RS covers the whole cell. Experimental results demonstrate the efficacy of this new BS-RS Switching technique from both an energy saving and QoS perspective, in the up and downlinks

    Maximizing Profit in Green Cellular Networks through Collaborative Games

    Full text link
    In this paper, we deal with the problem of maximizing the profit of Network Operators (NOs) of green cellular networks in situations where Quality-of-Service (QoS) guarantees must be ensured to users, and Base Stations (BSs) can be shared among different operators. We show that if NOs cooperate among them, by mutually sharing their users and BSs, then each one of them can improve its net profit. By using a game-theoretic framework, we study the problem of forming stable coalitions among NOs. Furthermore, we propose a mathematical optimization model to allocate users to a set of BSs, in order to reduce costs and, at the same time, to meet user QoS for NOs inside the same coalition. Based on this, we propose an algorithm, based on cooperative game theory, that enables each operator to decide with whom to cooperate in order to maximize its profit. This algorithms adopts a distributed approach in which each NO autonomously makes its own decisions, and where the best solution arises without the need to synchronize them or to resort to a trusted third party. The effectiveness of the proposed algorithm is demonstrated through a thorough experimental evaluation considering real-world traffic traces, and a set of realistic scenarios. The results we obtain indicate that our algorithm allows a population of NOs to significantly improve their profits thanks to the combination of energy reduction and satisfaction of QoS requirements.Comment: Added publisher info and citation notic

    Cell sleeping for energy efficiency in cellular networks: Is it viable?

    Get PDF
    An approach advocated in the recent literature for reducing energy consumption in cellular networks is to put base stations to sleep when traffic loads are low. However, several practical considerations are ignored in these studies. In this paper, we aim to raise questions on the feasibility and benefits of base station sleeping. Specifically we analyze the interference and capacity of a coverage-based energy reduction system in CDMA based cellular networks using a simple analytical model and show that sleeping may not be a feasible solution to reduce energy consumption in many scenarios. © 2012 IEEE

    Performance Analysis of Cell Zooming Based Centralized Algorithm for Energy Efficient in Surabaya

    Get PDF
    The cellular subscribers’s growth over the years increases the traffic volume at Base Stations (BSs) significantly. Typically, in central business district (CBD) area, the traffic load in cellular network in the daytime is relatively heavy, and light in the daynight. But, Base Station still consumes energy normally. It can cause the energy consumption is wasted. On the other hand, energy consumption being an important issue in the world. Because, higher energy consumption contributes on increasing of emission. Thus, it requires for efficiency energy methods by switching BS dynamically. The methods are Lower-to-Higher (LH) and Higher-to-Lower (HL) scheme on centralized algorithm. In this paper propose cell zooming technique  which can adjusts the cell size dynamic based on traffic condition. The simulation result by using Lower-to-Higher (LH) scheme can save the network energy consumption up to 70.7917% when the number of mobile user is 37 users and 0% when the number of mobile user is more than or equal to 291 users. While, Higher-to-Lower (HL) scheme can save the network energy consumption up to 32.3303% when the number of mobile user is 37 users and 0% when the number of mobile user is more than or equal to 292 users. From both of these schemes, we can analyze that by using Lower-to-Higher (LH) scheme reduces energy consumption greater than using Higher-to-Lower (HL) scheme. Nevertheless, both of them can be implemented for energy-efficient method in CBD area. Eventually, the cell zooming technique by using two schemes on centralized algorithm which leads to green cellular network in Surabaya is investigated

    Analysis of Energy Consumption Using Sequential to Better Signal (SBS) Scheme for Green Celluler Network

    Get PDF
    Over time, cellular communication technology developed significantly from year to year. This is due to increasing the number of users and the higher needed. To overcome this problem, many providers increase the number of new base station installations to fill up the customer's needed. The increase number of base stations does not take into account the amount of power consumption produced, where in the cellular network Base Stations (BS) are the most dominant energy consuming equipment estimated at 60% - 80% of the total energy consumption in the cellular industry. In addition, energy waste often occurs in the BS where the emission power will always remain even if the number of users is small. Power consumption and energy savings are important issues at this time because they will affect CO2 emissions in the air. This paper proposes to save energy consumption from BS by turning off BS (sleep mode) if the number of users is small and distributed to other BS (neighboring BS) which is called cell zooming technique. The cell size can zoom out when the load traffic is high and zoom in when the load traffic is low. To determine the central BS and neighboring BS, a sequential to better signal (SBS) scheme is used where this scheme sorts neighboring BS based on the SINR value received (user). The results of this research, base station can be able to save energy 29.12% and reduce CO2 emission around 3580 kg/year.  It means saving energy consumption which is also reducing air pollution occurs and this term can be named as green cellular network.&nbsp
    • …
    corecore