2,107,927 research outputs found
In-Person Contact Begets Calling and Texting: Interpersonal Motives for Cell Phone Use, Face-to-Face interaction, and Loneliness
This study examined how cell-phone use is related to interpersonal motives for using cell phones, face-to-face communication, and loneliness. A survey of 232 college students who owned a cell phone revealed that affection and inclusion were relatively strong motivations for using voice calls and text messaging, and that interpersonal motives were positively related to the amount of cell-phone use, including calling and texting. The amount of face-to-face interaction was positively associated with the participants' cell-phone use and their interpersonal motives for using cell phones: the more the participants engaged in face-to-face interaction with other people, the higher their motives were and the more frequent cell-phone use was. Loneliness did not have a direct relation to cell-phone use. Instead, the participants with higher levels of loneliness were less likely to engage in face-to-face social interaction, which led them to use cell phones less and to be less motivated to use cell phones for interpersonal purposes.Communication Studie
Recommended from our members
Tyrosine-Based Signals Regulate the Assembly of Daple⋅PARD3 Complex at Cell-Cell Junctions.
Polarized distribution of organelles and molecules inside a cell is vital for a range of cellular processes and its loss is frequently encountered in disease. Polarization during planar cell migration is a special condition in which cellular orientation is triggered by cell-cell contact. We demonstrate that the protein Daple (CCDC88C) is a component of cell junctions in epithelial cells which serves like a cellular "compass" for establishing and maintaining contact-triggered planar polarity. Furthermore, these processes may be mediated through interaction with the polarity regulator PARD3. This interaction, mediated by Daple's PDZ-binding motif (PBM) and the third PDZ domain of PARD3, is fine-tuned by tyrosine phosphorylation on Daple's PBM by receptor and non-receptor tyrosine kinases, such as Src. Hypophosphorylation strengthens the interaction, whereas hyperphosphorylation disrupts it, thereby revealing an unexpected role of Daple as a platform for signal integration and gradient sensing for tyrosine-based signals within the planar cell polarity pathway
MAPPI-DAT : data management and analysis for protein-protein interaction data from the high-throughput MAPPIT cell microarray platform
Protein-protein interaction (PPI) studies have dramatically expanded our knowledge about cellular behaviour and development in different conditions. A multitude of high-throughput PPI techniques have been developed to achieve proteome-scale coverage for PPI studies, including the microarray based Mammalian Protein-Protein Interaction Trap (MAPPIT) system. Because such high-throughput techniques typically report thousands of interactions, managing and analysing the large amounts of acquired data is a challenge. We have therefore built the MAPPIT cell microArray Protein Protein Interaction-Data management & Analysis Tool (MAPPI-DAT) as an automated data management and analysis tool for MAPPIT cell microarray experiments. MAPPI-DAT stores the experimental data and metadata in a systematic and structured way, automates data analysis and interpretation, and enables the meta-analysis of MAPPIT cell microarray data across all stored experiments
A natural killer cell receptor specific for a major histocompatibility complex class I molecule.
Target cell expression of major histocompatibility complex (MHC) class I molecules correlates with resistance to lysis by natural killer (NK) cells. Prior functional studies of the murine NK cell surface molecule, Ly-49, suggested its role in downregulating NK cell cytotoxicity by specifically interacting with target cell H-2Dd molecules. In support of this hypothesis, we now demonstrate a physical interaction between H-2Dd and Ly-49 in both qualitative and quantitative cell-cell binding assays employing a stable transfected Chinese hamster ovary (CHO) cell line expressing Ly-49 and MHC class I transfected target cells. Binding occurred only when CHO cells expressed Ly-49 at high levels and targets expressed H-2Dd by transfection. Monoclonal antibody blocking experiments confirmed this interaction. These studies indicate that the specificity of natural killing is influenced by NK cell receptors that engage target cell MHC class I molecules
Positive and negative regulation of angiogenesis by soluble vascular endothelial growth factor receptor-1
Vascular endothelial growth factor receptor (VEGFR)-1 exists in different forms, derived from alternative splicing of the same gene. In addition to the transmembrane form, endothelial cells produce a soluble VEGFR-1 (sVEGFR-1) isoform, whereas non-endothelial cells produce both sVEGFR-1 and a different soluble molecule, known as soluble fms-like tyrosine kinase (sFlt)1-14. By binding members of the vascular endothelial growth factor (VEGF) family, the soluble forms reduce the amounts of VEGFs available for the interaction with their transmembrane receptors, thereby negatively regulating VEGFR-mediated signaling. In agreement with this activity, high levels of circulating sVEGFR-1 or sFlt1-14 are associated with different pathological conditions involving vascular dysfunction. Moreover, sVEGFR-1 and sFlt1-14 have an additional role in angiogenesis: they are deposited in the endothelial cell and pericyte extracellular matrix, and interact with cell membrane components. Interaction of sVEGFR-1 with α5β1 integrin on endothelial cell membranes regulates vessel growth, triggering a dynamic, pro-angiogenic phenotype. Interaction of sVEGFR-1/sFlt1-14 with cell membrane glycosphingolipids in lipid rafts controls kidney cell morphology and glomerular barrier functions. These cell-matrix contacts represent attractive novel targets for pharmacological intervention in addition to those addressing interactions between VEGFs and their receptors
Diversity, Stability, Recursivity, and Rule Generation in Biological System: Intra-inter Dynamics Approach
Basic problems for the construction of a scenario for the Life are discussed.
To study the problems in terms of dynamical systems theory, a scheme of
intra-inter dynamics is presented. It consists of internal dynamics of a unit,
interaction among the units, and the dynamics to change the dynamics itself,
for example by replication (and death) of units according to their internal
states. Applying the dynamics to cell differentiation, isologous
diversification theory is proposed. According to it, orbital instability leads
to diversified cell behaviors first. At the next stage, several cell types are
formed, first triggered by clustering of oscillations, and then as attracting
states of internal dynamics stabilized by the cell-to-cell interaction. At the
third stage, the differentiation is determined as a recursive state by cell
division. At the last stage, hierarchical differentiation proceeds, with the
emergence of stochastic rule for the differentiation to sub-groups, where
regulation of the probability for the differentiation provides the diversity
and stability of cell society. Relevance of the theory to cell biology is
discussed.Comment: 19 pages, Int.J. Mod. Phes. B (in press
Poisson-Boltzmann Theory of Charged Colloids: Limits of the Cell Model for Salty Suspensions
Thermodynamic properties of charge-stabilised colloidal suspensions are
commonly modeled by implementing the mean-field Poisson-Boltzmann (PB) theory
within a cell model. This approach models a bulk system by a single macroion,
together with counterions and salt ions, confined to a symmetrically shaped,
electroneutral cell. While easing solution of the nonlinear PB equation, the
cell model neglects microion-induced correlations between macroions, precluding
modeling of macroion ordering phenomena. An alternative approach, avoiding
artificial constraints of cell geometry, maps a macroion-microion mixture onto
a one-component model of pseudo-macroions governed by effective interactions.
In practice, effective-interaction models are usually based on linear screening
approximations, which can accurately describe nonlinear screening only by
incorporating an effective (renormalized) macroion charge. Combining charge
renormalization and linearized PB theories, in both the cell model and an
effective-interaction (cell-free) model, we compute osmotic pressures of highly
charged colloids and monovalent microions over a range of concentrations. By
comparing predictions with primitive model simulation data for salt-free
suspensions, and with predictions of nonlinear PB theory for salty suspensions,
we chart the limits of both the cell model and linear-screening approximations
in modeling bulk thermodynamic properties. Up to moderately strong
electrostatic couplings, the cell model proves accurate in predicting osmotic
pressures of deionized suspensions. With increasing salt concentration,
however, the relative contribution of macroion interactions grows, leading
predictions of the cell and effective-interaction models to deviate. No
evidence is found for a liquid-vapour phase instability driven by monovalent
microions. These results may guide applications of PB theory to soft materials.Comment: 27 pages, 5 figures, special issue of Journal of Physics: Condensed
Matter on "Classical density functional theory methods in soft and hard
matter
Perspectives on the Trypanosoma cruzi-host cell receptor interaction
Chagas disease is caused by the parasite Trypanosoma cruzi. The critical initial event is the interaction of the trypomastigote form of the parasite with host receptors. This review highlights recent observations concerning these interactions. Some of the key receptors considered are those for thromboxane, bradykinin, and for the nerve growth factor TrKA. Other important receptors such as galectin-3, thrombospondin, and laminin are also discussed. Investigation into the molecular biology and cell biology of host receptors for T. cruzi may provide novel therapeutic targets
Operation of Quantum Cellular Automaton cells with more than two electrons
We present evidence that operation of QCA (Quantum Cellular Automaton) cells
with four dots is possible with an occupancy of 4N+2 electrons per cell (N
being an integer). We show that interaction between cells can be described in
terms of a revised formula for cell polarization, which is based only on the
difference between diagonal occupancies. We validate our conjectures with full
quantum simulations of QCA cells for a number of electrons varying from 2 to 6,
using the Configuration-Interaction method.Comment: 4 pages, 4 figures included, submitted to AP
Animal lectins as cell adhesion molecules
Protein-carbohydrate interaction is exploited in cell adhesion mechanisms besides the recognition of peptide motifs. The sugar code thus significantly contributes to the intriguing specificity of cellular selection of binding partners. Focusing on two classes of lectins (selectins and galectins), it is evident that their functionality for mediation of adhesive contacts is becoming increasingly appreciated, as is the integration of this type of interaction with other recognition modes to yield the noted specificity. The initial contact formation between leukocytes and activated endothelium makes use of selectins to guide lymphocyte trafficking. In addition to the three selectins which bind a distinct array of ligands, galectin-1 and galectin-3 and possibly other members of this family are involved in cell-cell or cell-matrix interactions. This review summarizes structural and functional aspects of these two classes of endogenous lectins relevant for cell adhesion
- …
