3,355 research outputs found

    The main component of the toric Hilbert scheme

    Full text link
    Let \X be an affine toric variety under a torus \T and let T be a subtorus. The general T-orbit closures in \X and their flat limits are parametrized by the main component H_0 of the toric Hilbert scheme. Further, the quotient torus \T/T acts on H_0 with a dense orbit. We describe the fan of this toric variety; this leads us to an integral analogue of the fiber polytope of Billera and Sturmfels. We also describe the relation of H_0 to the main component of the inverse limit of GIT quotients of \X by T.Comment: 18 page

    Minimal half-spaces and external representation of tropical polyhedra

    Full text link
    We give a characterization of the minimal tropical half-spaces containing a given tropical polyhedron, from which we derive a counter example showing that the number of such minimal half-spaces can be infinite, contradicting some statements which appeared in the tropical literature, and disproving a conjecture of F. Block and J. Yu. We also establish an analogue of the Minkowski-Weyl theorem, showing that a tropical polyhedron can be equivalently represented internally (in terms of extreme points and rays) or externally (in terms of half-spaces containing it). A canonical external representation of a polyhedron turns out to be provided by the extreme elements of its tropical polar. We characterize these extreme elements, showing in particular that they are determined by support vectors.Comment: 19 pages, 4 figures, example added with a new figure, figures improved, references update

    Metric combinatorics of convex polyhedra: cut loci and nonoverlapping unfoldings

    Full text link
    This paper is a study of the interaction between the combinatorics of boundaries of convex polytopes in arbitrary dimension and their metric geometry. Let S be the boundary of a convex polytope of dimension d+1, or more generally let S be a `convex polyhedral pseudomanifold'. We prove that S has a polyhedral nonoverlapping unfolding into R^d, so the metric space S is obtained from a closed (usually nonconvex) polyhedral ball in R^d by identifying pairs of boundary faces isometrically. Our existence proof exploits geodesic flow away from a source point v in S, which is the exponential map to S from the tangent space at v. We characterize the `cut locus' (the closure of the set of points in S with more than one shortest path to v) as a polyhedral complex in terms of Voronoi diagrams on facets. Analyzing infinitesimal expansion of the wavefront consisting of points at constant distance from v on S produces an algorithmic method for constructing Voronoi diagrams in each facet, and hence the unfolding of S. The algorithm, for which we provide pseudocode, solves the discrete geodesic problem. Its main construction generalizes the source unfolding for boundaries of 3-polytopes into R^2. We present conjectures concerning the number of shortest paths on the boundaries of convex polyhedra, and concerning continuous unfolding of convex polyhedra. We also comment on the intrinsic non-polynomial complexity of nonconvex polyhedral manifolds.Comment: 47 pages; 21 PostScript (.eps) figures, most in colo
    • 

    corecore