324,708 research outputs found

    Lineage dynamics of murine pancreatic development at single-cell resolution.

    Get PDF
    Organogenesis requires the complex interactions of multiple cell lineages that coordinate their expansion, differentiation, and maturation over time. Here, we profile the cell types within the epithelial and mesenchymal compartments of the murine pancreas across developmental time using a combination of single-cell RNA sequencing, immunofluorescence, in situ hybridization, and genetic lineage tracing. We identify previously underappreciated cellular heterogeneity of the developing mesenchyme and reconstruct potential lineage relationships among the pancreatic mesothelium and mesenchymal cell types. Within the epithelium, we find a previously undescribed endocrine progenitor population, as well as an analogous population in both human fetal tissue and human embryonic stem cells differentiating toward a pancreatic beta cell fate. Further, we identify candidate transcriptional regulators along the differentiation trajectory of this population toward the alpha or beta cell lineages. This work establishes a roadmap of pancreatic development and demonstrates the broad utility of this approach for understanding lineage dynamics in developing organs

    Violation of cell lineage restriction compartments in the chick hindbrain

    Get PDF
    Previous cell lineage studies indicate that the repeated neuromeres of the chick hindbrain, the rhombomeres, are cell lineage restriction compartments. We have extended these results and tested if the restrictions are absolute. Two different cell marking techniques were used to label cells shortly after rhombomeres form (stage 9+ to 13) so that the resultant clones could be followed up to stage 25. Either small groups of cells were labelled with the lipophilic dye DiI or single cells were injected intracellularly with fluorescent dextran. The majority of the descendants labelled by either technique were restricted to within a single rhombomere. However, in a small but reproducible proportion of the cases (greater than 5%), the clones expanded across a rhombomere boundary. Neither the stage of injection, the stage of analysis, the dorsoventral position, nor the rhombomere identity correlated with the boundary crossing. Judging from the morphology of the cells, both neurons and non-neuronal cells were able to expand over a boundary. These results demonstrate that the rhombomere boundaries represent cell lineage restriction barriers which are not impenetrable in normal development

    Molecular recording of mammalian embryogenesis.

    Get PDF
    Ontogeny describes the emergence of complex multicellular organisms from single totipotent cells. This field is particularly challenging in mammals, owing to the indeterminate relationship between self-renewal and differentiation, variation in progenitor field sizes, and internal gestation in these animals. Here we present a flexible, high-information, multi-channel molecular recorder with a single-cell readout and apply it as an evolving lineage tracer to assemble mouse cell-fate maps from fertilization through gastrulation. By combining lineage information with single-cell RNA sequencing profiles, we recapitulate canonical developmental relationships between different tissue types and reveal the nearly complete transcriptional convergence of endodermal cells of extra-embryonic and embryonic origins. Finally, we apply our cell-fate maps to estimate the number of embryonic progenitor cells and their degree of asymmetric partitioning during specification. Our approach enables massively parallel, high-resolution recording of lineage and other information in mammalian systems, which will facilitate the construction of a quantitative framework for understanding developmental processes

    The role of Sox9 in mouse mammary gland development and maintenance of mammary stem and luminal progenitor cells.

    Get PDF
    BackgroundIdentification and characterization of molecular controls that regulate mammary stem and progenitor cell homeostasis are critical to our understanding of normal mammary gland development and its pathology.ResultsWe demonstrate that conditional knockout of Sox9 in the mouse mammary gland results in impaired postnatal development. In short-term lineage tracing in the postnatal mouse mammary gland using Sox9-CreER driven reporters, Sox9 marked primarily the luminal progenitors and bipotent stem/progenitor cells within the basal mammary epithelial compartment. In contrast, long-term lineage tracing studies demonstrate that Sox9+ precursors gave rise to both luminal and myoepithelial cell lineages. Finally, fate mapping of Sox9 deleted cells demonstrates that Sox9 is essential for luminal, but not myoepithelial, lineage commitment and proliferation.ConclusionsThese studies identify Sox9 as a key regulator of mammary gland development and stem/progenitor maintenance

    Imaging cell lineage with a synthetic digital recording system

    Get PDF
    Cell lineage plays a pivotal role in cell fate determination. Chow et al. demonstrate the use of an integrase-based synthetic barcode system called intMEMOIR, which uses the serine integrase Bxb1 to perform irreversible nucleotide edits. Inducible editing either deletes or inverts its target region, thus encoding information in three-state memory elements, or trits, and avoiding undesired recombination events. Using intMEMOIR combined with single-molecule fluorescence in situ hybridization, the authors were able to identify clonal structures as well as gene expression patterns in the fly brain, enabling both clonal analysis and expression profiling with intact spatial information. The ability to visualize cell lineage relationships directly within their native tissue context provides insights into development and disease

    Systemic mastocytosis with associated myeloproliferative disease and precursor B lymphoblastic leukaemia with t(13;13)(q12;q22) involving FLT3.

    Get PDF
    Systemic mastocytoses represent neoplastic proliferations of mast cells. In about 20% of cases systemic mastocytoses are accompanied by clonal haematopoietic non-mast cell-lineage disorders, most commonly myeloid neoplasms. A case of systemic mastocytosis carrying the characteristic mutation at codon 816 (D816V) in the KIT gene of mast cells, with two concurrent accompanying clonal haematopoietic non-mast cell-lineage disorders, chronic myeloproliferative disease, unclassifiable and precursor B lymphoblastic leukaemia is documented. Both accompanying clonal haematopoietic non-mast cell-lineage disorders carried the wild-type KIT gene, but had a novel t(13;13)(q12;q22) involving the FLT3 locus at 13q12. The chronic myeloproliferative disease, unclassifiable and the precursor B lymphoblastic leukaemia were cured by syngenous stem cell transplantation, but the systemic mastocytosis persisted for more than 10 years. The additional impact of molecular techniques on the correct diagnosis in haematological malignancies is highlighted, and evidence is provided that, apart from internal tandem duplications and mutations, FLT3 can be activated by translocations
    corecore