312,924 research outputs found
Deterministic mechanical model of T-killer cell polarization reproduces the wandering of aim between simultaneously engaged targets
T-killer cells of the immune system eliminate virus-infected and tumorous cells through direct cell-cell interactions. Reorientation of the killing apparatus inside the T cell to the T-cell interface with the target cell ensures specificity of the immune response. The killing apparatus can also oscillate next to the cell-cell interface. When two target cells are engaged by the T cell simultaneously, the killing apparatus can oscillate between the two interface areas. This oscillation is one of the most striking examples of cell movements that give the microscopist an unmechanistic impression of the cell's fidgety indecision. We have constructed a three-dimensional, numerical biomechanical model of the molecular-motor-driven microtubule cytoskeleton that positions the killing apparatus. The model demonstrates that the cortical pulling mechanism is indeed capable of orienting the killing apparatus into the functional position under a range of conditions. The model also predicts experimentally testable limitations of this commonly hypothesized mechanism of T-cell polarization. After the reorientation, the numerical solution exhibits complex, multidirectional, multiperiodic, and sustained oscillations in the absence of any external guidance or stochasticity. These computational results demonstrate that the strikingly animate wandering of aim in T-killer cells has a purely mechanical and deterministic explanation. © 2009 Kim, Maly
Recommended from our members
Monoclonal Antibodies of a Diverse Isotype Induced by an O-Antigen Glycoconjugate Vaccine Mediate In Vitro and In Vivo Killing of African Invasive Nontyphoidal Salmonella.
Nontyphoidal Salmonella (NTS), particularly Salmonella enterica serovars Typhimurium and Enteritidis, is responsible for a major global burden of invasive disease with high associated case-fatality rates. We recently reported the development of a candidate O-antigen-CRM197 glycoconjugate vaccine against S. Typhimurium. Here, using a panel of mouse monoclonal antibodies generated by the vaccine, we examined the relative efficiency of different antibody isotypes specific for the O:4 antigen of S. Typhimurium to effect in vitro and in vivo killing of the invasive African S. Typhimurium strain D23580. All O:4-specific antibody isotypes could mediate cell-free killing and phagocytosis of S. Typhimurium by mouse blood cells. Opsonization of Salmonella with O:4-specific IgA, IgG1, IgG2a, and IgG2b, but not IgM, resulted in cell-dependent bacterial killing. At high concentrations, O:4-specific antibodies inhibited both cell-free complement-mediated and cell-dependent opsonophagocytic killing of S. Typhimurium in vitro. Using passive immunization in mice, the O:4-specific antibodies provided in vivo functional activity by decreasing the bacterial load in the blood and tissues, with IgG2a and IgG2b being the most effective isotypes. In conclusion, an O-antigen-CRM197 glycoconjugate vaccine can induce O-antigen-specific antibodies of different isotypes that exert in vitro and in vivo killing of S. Typhimurium
NKR-P1A is a target-specific receptor that activates natural killer cell cytotoxicity.
NKR-P1A is a lectinlike surface molecule expressed on rat natural killer (NK) cells. NKR-P1A has structural and functional features of an activating NK cell receptor, but a requirement for NKR-P1A in target cell lysis has not been determined. To define the role of NKR-P1A in natural killing, we have generated a mutant of the rat NK cell line, RNK-16, lacking expression of all members of the NKR-P1 receptor family. Although these NKR-P1-deficient NK cells were able to kill many standard tumor targets, including YAC-1, they were selectively deficient in the lysis of IC-21 macrophage, B-16 melanoma, and C1498 lymphoma targets. Reexpression of a single member of the NKR-P1 family, NKR-P1A, on mutant cells restored lysis of IC-21, and killing of IC-21 targets through rat NKR-P1A was completely blocked by F(ab')2 anti-NKR-P1A. Reexpression of NKR-P1A also restored transmembrane signaling to IC-21, as assessed by the generation of inositol-1,4,5-trisphosphate. The generation of inositol-1,4,5-trisphosphate was also restored in response to B-16 targets, but both B-16 and C1498 cells remained resistant to lysis, indicating that other NK cell molecules, perhaps within the NKR-P1 family, are required for the efficient killing of these tumors. These results are the first to demonstrate that NKR-P1A is a target-specific receptor that activates natural killing
Image-based dynamic phenotyping reveals genetic determinants of filamentation-mediated beta-lactam tolerance
Antibiotic tolerance characterized by slow killing of bacteria in response to a drug can lead to treatment failure and promote the emergence of resistance. beta-lactam antibiotics inhibit cell wall growth in bacteria and many of them cause filamentation followed by cell lysis. Hence delayed cell lysis can lead to beta-lactam tolerance. Systematic discovery of genetic factors that affect beta-lactam killing kinetics has not been performed before due to challenges in high-throughput, dynamic analysis of viability of filamented cells during bactericidal action. We implemented a high-throughput time-resolved microscopy approach in a gene deletion library of Escherichia coli to monitor the response of mutants to the beta-lactam cephalexin. Changes in frequency of lysed and intact cells due to the antibiotic action uncovered several strains with atypical lysis kinetics. Filamentation confers tolerance because antibiotic removal before lysis leads to recovery through numerous concurrent divisions of filamented cells. Filamentation-mediated tolerance was not associated with resistance, and therefore this phenotype is not discernible through most antibiotic susceptibility methods. We find that deletion of Tol-Pal proteins TolQ, TolR, or Pal but not TolA, TolB, or CpoB leads to rapid killing by beta-lactams. We also show that the timing of cell wall degradation determines the lysis and killing kinetics after beta-lactam treatment. Altogether, this study uncovers numerous genetic determinants of hitherto unappreciated filamentation-mediated beta-lactam tolerance and support the growing call for considering antibiotic tolerance in clinical evaluation of pathogens. More generally, the microscopy screening methodology described here can easily be adapted to study lysis in large numbers of strains
Tumor-associated and immunochemotherapy-dependent long-term alterations of the peripheral blood NK cell compartment in DLBCL patients
Natural Killer (NK) cells are a key component of tumor immunosurveillance and thus play an important role in rituximab-dependent killing of lymphoma cells via an antibody-dependent cellular cytotoxicity (ADCC) mechanism. We evaluated the phenotypic and functional assets of peripheral blood NK cell subsets in 32 newly-diagnosed diffuse large B-cell lymphoma (DLBCL) patients and in 27 healthy controls. We further monitored long-term modifications of patient NK cells for up to 12 months after rituximab-based immunochemotherapy. At diagnosis, patients showed a higher percentage of CD56dim and CD16C NK cells, and a higher frequency of GrzBC cells in CD56dim, CD56bright, and CD16C NK cell subsets than healthy controls. Conversely, DLBCL NK cell killing and interferon g (IFNg) production capability were comparable to those derived from healthy subjects. Notably, NK cells from refractory/relapsed patients exhibited a lower “natural” cytotoxicity. A marked and prolonged therapy-induced reduction of both “natural” and CD16- dependent NK cytotoxic activities was accompanied by the down-modulation of CD16 and NKG2D activating receptors, particularly in the CD56dim subset. However, reduced NK cell killing was not associated with defective lytic granule content or IFNg production capability. This study firstly describes tumor-associated and therapy-induced alterations of the systemic NK cell compartment in DLBCL patients. As these alterations may negatively impact rituximab-based therapy efficacy, our work may provide useful information for improving immunochemotherapeutic strategies
Nod1 signaling overcomes resistance of S. pneumoniae to opsonophagocytic killing
Airway infection by the Gram-positive pathogen Streptococcus pneumoniae (Sp) leads to recruitment of neutrophils but
limited bacterial killing by these cells. Co-colonization by Sp and a Gram-negative species, Haemophilus influenzae (Hi),
provides sufficient stimulus to induce neutrophil and complement-mediated clearance of Sp from the mucosal surface
in a murine model. Products from Hi, but not Sp, also promote killing of Sp by ex vivo neutrophil-enriched peritoneal
exudate cells. Here we identify the stimulus from Hi as its peptidoglycan. Enhancement of opsonophagocytic killing
was facilitated by signaling through nucleotide-binding oligomerization domain-1 (Nod1), which is involved in
recognition of γ-D-glutamyl-meso-diaminopimelic acid (meso-DAP) contained in cell walls of Hi but not Sp. Neutrophils
from mice treated with Hi or compounds containing meso-DAP, including synthetic peptidoglycan fragments, showed
increased Sp killing in a Nod1-dependent manner. Moreover, Nod1-/- mice showed reduced Hi-induced clearance of Sp
during co-colonization. These observations offer insight into mechanisms of microbial competition and demonstrate
the importance of Nod1 in neutrophil-mediated clearance of bacteria in vivo
A rhodanine agent active against non-replicating intracellular Mycobacterium avium subspecies paratuberculosis.
BACKGROUND: Antibiotic therapy targeting chronic mycobacterial disease is often ineffective due to problems with the emergence of drug resistance and non-replicating persistent intracellular antibiotic resistant phenotypes. Strategies which include agents able to enhance host cell killing mechanisms could represent an alternative to conventional methods with the potential for host clearance if active against dormant phenotypes. Investigations of agents with potential activity against non-replicating mycobacteria however are restricted due to a need for assays that can assess bacterial viability without having to culture.
RESULTS: This study describes the development and use of a pre16S ribosomal gene RNA/DNA ratio viability assay which is independent of the need for culture, supported by a novel thin layer accelerated mycobacterial colony forming method for determining viability and culturability of MAP in intracellular environments. We describe the use of these tools to demonstrate intracellular killing activity of a novel rhodanine agent (D157070) against the intracellular pathogen Mycobacterium avium subspecies paratuberculosis (MAP) and show that the culturability of MAP decreases relative to its viability on intracellular entry suggesting the induction of a non-culturable phenotype. We further demonstrate that D157070, although having no direct activity against the culturability of extracellular MAP, can bind to cultured MAP cells and has significant influence on the MAP transcriptome, particularly with respect of delta(L )associated genes. D157070 is shown to be taken up by bovine and human cells and able to enhance host cell killing, as measured by significant decreases in both culturability and viability of intracellular MAP.
CONCLUSIONS: This work suggests that pre16srRNA gene ratios represent a viable method for studying MAP viability. In addition, the rhodanine agent D157070 tested is non-toxic and enhances cell killing activity against both growing and latent MAP phenotypes
CD171- and GD2-specific CAR-T cells potently target retinoblastoma cells in preclinical in vitro testing
BACKGROUND:
Chimeric antigen receptor (CAR)-based T cell therapy is in early clinical trials to target the neuroectodermal tumor, neuroblastoma. No preclinical or clinical efficacy data are available for retinoblastoma to date. Whereas unilateral intraocular retinoblastoma is cured by enucleation of the eye, infiltration of the optic nerve indicates potential diffuse scattering and tumor spread leading to a major therapeutic challenge. CAR-T cell therapy could improve the currently limited therapeutic strategies for metastasized retinoblastoma by simultaneously killing both primary tumor and metastasizing malignant cells and by reducing chemotherapy-related late effects.
METHODS:
CD171 and GD2 expression was flow cytometrically analyzed in 11 retinoblastoma cell lines. CD171 expression and T cell infiltration (CD3+) was immunohistochemically assessed in retrospectively collected primary retinoblastomas. The efficacy of CAR-T cells targeting the CD171 and GD2 tumor-associated antigens was preclinically tested against three antigen-expressing retinoblastoma cell lines. CAR-T cell activation and exhaustion were assessed by cytokine release assays and flow cytometric detection of cell surface markers, and killing ability was assessed in cytotoxic assays. CAR constructs harboring different extracellular spacer lengths (short/long) and intracellular co-stimulatory domains (CD28/4-1BB) were compared to select the most potent constructs.
RESULTS:
All retinoblastoma cell lines investigated expressed CD171 and GD2. CD171 was expressed in 15/30 primary retinoblastomas. Retinoblastoma cell encounter strongly activated both CD171-specific and GD2-specific CAR-T cells. Targeting either CD171 or GD2 effectively killed all retinoblastoma cell lines examined. Similar activation and killing ability for either target was achieved by all CAR constructs irrespective of the length of the extracellular spacers and the co-stimulatory domain. Cell lines differentially lost tumor antigen expression upon CAR-T cell encounter, with CD171 being completely lost by all tested cell lines and GD2 further down-regulated in cell lines expressing low GD2 levels before CAR-T cell challenge. Alternating the CAR-T cell target in sequential challenges enhanced retinoblastoma cell killing.
CONCLUSION:
Both CD171 and GD2 are effective targets on human retinoblastoma cell lines, and CAR-T cell therapy is highly effective against retinoblastoma in vitro. Targeting of two different antigens by sequential CAR-T cell applications enhanced tumor cell killing and preempted tumor antigen loss in preclinical testing
Legionella pneumophila strain 130b evades macrophage cell death independent of the effector SidF in the absence of flagellin
International audienceThe human pathogen Legionella pneumophila must evade host cell death signaling to enable replication in lung macrophages and to cause disease. After bacterial growth, however, L. pneumophila is thought to induce apoptosis during egress from macrophages. The bacterial effector protein, SidF, has been shown to control host cell survival and death by inhibiting pro-apoptotic BNIP3 and BCL-RAMBO signaling. Using live-cell imaging to follow the L. pneumophila-macrophage interaction, we now demonstrate that L. pneumophila evades host cell apoptosis independent of SidF. In the absence of SidF, L. pneumophila was able to replicate, cause loss of mitochondria membrane potential, kill macrophages, and establish infections in lungs of mice. Consistent with this, deletion of BNIP3 and BCL-RAMBO did not affect intracellular L. pneumophila replication, macrophage death rates, and in vivo bacterial virulence. Abrogating mitochondrial cell death by genetic deletion of the effectors of intrinsic apoptosis, BAX, and BAK, or the regulator of mitochondrial permeability transition pore formation, cyclophilin-D, did not affect bacterial growth or the initial killing of macrophages. Loss of BAX and BAK only marginally limited the ability of L. pneumophila to efficiently kill all macrophages over extended periods. L. pneumophila induced killing of macrophages was delayed in the absence of capsase-11 mediated pyroptosis. Together, our data demonstrate that L. pneumophila evades host cell death responses independently of SidF during replication and can induce pyroptosis to kill macrophages in a timely manner
Recommended from our members
Mathematical deconvolution of CAR T-cell proliferation and exhaustion from real-time killing assay data.
Chimeric antigen receptor (CAR) T-cell therapy has shown promise in the treatment of haematological cancers and is currently being investigated for solid tumours, including high-grade glioma brain tumours. There is a desperate need to quantitatively study the factors that contribute to the efficacy of CAR T-cell therapy in solid tumours. In this work, we use a mathematical model of predator-prey dynamics to explore the kinetics of CAR T-cell killing in glioma: the Chimeric Antigen Receptor T-cell treatment Response in GliOma (CARRGO) model. The model includes rates of cancer cell proliferation, CAR T-cell killing, proliferation, exhaustion, and persistence. We use patient-derived and engineered cancer cell lines with an in vitro real-time cell analyser to parametrize the CARRGO model. We observe that CAR T-cell dose correlates inversely with the killing rate and correlates directly with the net rate of proliferation and exhaustion. This suggests that at a lower dose of CAR T-cells, individual T-cells kill more cancer cells but become more exhausted when compared with higher doses. Furthermore, the exhaustion rate was observed to increase significantly with tumour growth rate and was dependent on level of antigen expression. The CARRGO model highlights nonlinear dynamics involved in CAR T-cell therapy and provides novel insights into the kinetics of CAR T-cell killing. The model suggests that CAR T-cell treatment may be tailored to individual tumour characteristics including tumour growth rate and antigen level to maximize therapeutic benefit
- …
