1,751,046 research outputs found
Cell cycle length, cell size, and proliferation rate in hydra stem cells
We have analyzed the cell cycle parameters of interstitial cells in Hydra oligactis. Three subpopulations of cells with short, medium, and long cell cycles were identified. Short-cycle cells are stem cells; medium-cycle cells are precursors to nematocyte differentiation; long-cycle cells are precursors to gamete differentiation. We have also determined the effect of different cell densities on the population doubling time, cell cycle length, and cell size of interstitial cells. Our results indicate that decreasing the interstitial cell density from 0.35 to 0.1 interstitial cells/epithelial cell (1) shortens the population doubling time from 4 to 1.8 days, (2) increases the [3H]thymidine labeling index from 0.5 to 0.75 and shifts the nuclear DNA distribution from G2 to S phase cells, and (3) decreases the length of G2 in stem cells from 6 to 3 hr. The shortened cell cycle is correlated with a significant decrease in the size of interstitial stem cells. Coincident with the shortened cell cycle and increased growth rate there is an increase in stem cell self-renewal and a decrease in stem cell differentiation
The cell cycle program of polypeptide labeling in Chlamydomonas reinhardtii
The cell cycle program of polypeptide labeling in syndhronous cultures of wild-type Chlamydomonas reinhardtii was analyzed by pulse-labeling cells with 35SO4 = or [3H]arginine at different cell cycle stages. Nearly 100 labeled membrane and soluble polypeptides were resolved and studied using one-dimensional sodium dodecyl sulfate (SDS)- polyacrylamide gel electrophoresis. The labeling experiments produced the following results. (a) Total 35SO4 = and [3H]arginine incorporation rates varied independently throughout the cell cycle. 35SO4 = incorporation was highest in the mid-light phase, while [3H]arginine incorporation peaked in the dark phase just before cell division. (b) The relative labeling rate for 20 of 100 polypeptides showed significant fluctuations (3-12 fold) during the cell cycle. The remaining polypeptides were labeled at a rate commensurate with total 35SO4 = or [3H]arginine incorporation. The polypeptides that showed significant fluctuations in relative labeling rates served as markers to identify cell cycle stages. (c) The effects of illumination conditions on the apparent cell cycle stage-specific labeling of polypeptides were tested. Shifting light-grown asynchronous cells to the dark had an immediate and pronounced effect on the pattern of polypeptide labeling, but shifting dark-phase syndhronous cells to the light had little effect. The apparent cell cycle variations in the labeling of ribulose 1,5-biphosphate (RUBP)-carboxylase were strongly influenced by illumination effects. (d) Pulse-chase experiments with light-grown asynchronous cells revealed little turnover or inter- conversion of labeled polypeptides within one cell generation, meaning that major polypeptides, whether labeled in a stage-specific manner or not, do not appear transiently in the cell cycle of actively dividing, light-grown cells. The cell cycle program of labeling was used to analyze effects of a temperature-sensitive cycle blocked (cb) mutant. A synchronous culture of ts10001 was shifted to restrictive temperature before its block point to prevent it from dividing. The mutant continued its cell cycle program of polypeptide labeling for over a cell generation, despite its inability to divide
Recommended from our members
Unbiased Boolean analysis of public gene expression data for cell cycle gene identification.
Cell proliferation is essential for the development and maintenance of all organisms and is dysregulated in cancer. Using synchronized cells progressing through the cell cycle, pioneering microarray studies defined cell cycle genes based on cyclic variation in their expression. However, the concordance of the small number of synchronized cell studies has been limited, leading to discrepancies in definition of the transcriptionally regulated set of cell cycle genes within and between species. Here we present an informatics approach based on Boolean logic to identify cell cycle genes. This approach used the vast array of publicly available gene expression data sets to query similarity to CCNB1, which encodes the cyclin subunit of the Cdk1-cyclin B complex that triggers the G2-to-M transition. In addition to highlighting conservation of cell cycle genes across large evolutionary distances, this approach identified contexts where well-studied genes known to act during the cell cycle are expressed and potentially acting in nondivision contexts. An accessible web platform enables a detailed exploration of the cell cycle gene lists generated using the Boolean logic approach. The methods employed are straightforward to extend to processes other than the cell cycle
Nuclear translocation of Cyclin B1 marks the restriction point for terminal cell cycle exit in G2 phase
Upon DNA damage, cell cycle progression is temporally blocked to avoid propagation of mutations. While transformed cells largely maintain the competence to recover from a cell cycle arrest, untransformed cells past the G1/S transition lose mitotic inducers, and thus the ability to resume cell division. This permanent cell cycle exit depends on p21, p53, and APC/CCdh1. However, when and how permanent cell cycle exit occurs remains unclear. Here, we have investigated the cell cycle response to DNA damage in single cells that express Cyclin B1 fused to eYFP at the endogenous locus. We find that upon DNA damage Cyclin B1-eYFP continues to accumulate up to a threshold level, which is reached only in G2 phase. Above this threshold, a p21 and p53-dependent nuclear translocation required for APC/CCdh1-mediated Cyclin B1-eYFP degradation is initiated. Thus, cell cycle exit is decoupled from activation of the DNA damage response in a manner that correlates to Cyclin B1 levels, suggesting that G2 activities directly feed into the decision for cell cycle exit. Once Cyclin B1-eYFP nuclear translocation occurs, checkpoint inhibition can no longer promote mitotic entry or re-expression of mitotic inducers, suggesting that nuclear translocation of Cyclin B1 marks the restriction point for permanent cell cycle exit in G2 phase
Identification of calpain cleavage sites in the G1 cyclin-dependent kinase inhibitor p19(INK4d)
Calpains are a large family of Ca2+-dependent cysteine proteases that are ubiquitously distributed across most cell types and vertebrate species. Calpains play a role in cell differentiation, apoptosis, cytoskeletal remodeling, signal transduction and the cell cycle. The cell cycle proteins cyclin D1 and p21(KIP1), for example, have been shown to be affected by calpains. However, the rules that govern calpain cleavage specificity are poorly understood. We report here studies on the pattern of μ-calpain proteolysis of the p19(INK4d) protein, a cyclin-dependent kinase 4/6 inhibitor that negatively regulates the mammalian cell cycle. Our data show new characteristics of calpain action: μ-calpain cleaves p19(INK4d) immediately after the first and second ankyrin repeats that are structurally less stable compared to the other repeats. This is in contrast to features observed so far in the specificity of calpains for their substrates. These results imply that calpain may be involved in the cell cycle by regulating the cell cycle regulatory protein turnover through CDK inhibitors and cyclins
Modelling radiation-induced cell cycle delays
Ionizing radiation is known to delay the cell cycle progression. In
particular after particle exposure significant delays have been observed and it
has been shown that the extent of delay affects the expression of damage such
as chromosome aberrations. Thus, to predict how cells respond to ionizing
radiation and to derive reliable estimates of radiation risks, information
about radiation-induced cell cycle perturbations is required. In the present
study we describe and apply a method for retrieval of information about the
time-course of all cell cycle phases from experimental data on the mitotic
index only. We study the progression of mammalian cells through the cell cycle
after exposure. The analysis reveals a prolonged block of damaged cells in the
G2 phase. Furthermore, by performing an error analysis on simulated data
valuable information for the design of experimental studies has been obtained.
The analysis showed that the number of cells analyzed in an experimental sample
should be at least 100 to obtain a relative error less than 20%.Comment: 19 pages, 11 figures, accepted for publication in Radiation and
Environmental Biophysic
- …
