588,716 research outputs found
Cell aging preserves cellular immortality in the presence of lethal levels of damage.
Cellular aging, a progressive functional decline driven by damage accumulation, often culminates in the mortality of a cell lineage. Certain lineages, however, are able to sustain long-lasting immortality, as prominently exemplified by stem cells. Here, we show that Escherichia coli cell lineages exhibit comparable patterns of mortality and immortality. Through single-cell microscopy and microfluidic techniques, we find that these patterns are explained by the dynamics of damage accumulation and asymmetric partitioning between daughter cells. At low damage accumulation rates, both aging and rejuvenating lineages retain immortality by reaching their respective states of physiological equilibrium. We show that both asymmetry and equilibrium are present in repair mutants lacking certain repair chaperones, suggesting that intact repair capacity is not essential for immortal proliferation. We show that this growth equilibrium, however, is displaced by extrinsic damage in a dosage-dependent response. Moreover, we demonstrate that aging lineages become mortal when damage accumulation rates surpass a threshold, whereas rejuvenating lineages within the same population remain immortal. Thus, the processes of damage accumulation and partitioning through asymmetric cell division are essential in the determination of proliferative mortality and immortality in bacterial populations. This study provides further evidence for the characterization of cellular aging as a general process, affecting prokaryotes and eukaryotes alike and according to similar evolutionary constraints
Whole lifespan microscopic observation of budding yeast aging through a microfluidic dissection platform
Important insights into aging have been generated with the genetically tractable and short-lived budding yeast. However, it is still impossible today to continuously track cells by high-resolution microscopic imaging (e.g., fluorescent imaging) throughout their entire lifespan. Instead, the field still needs to rely on a 50-y-old laborious and time-consuming method to assess the lifespan of yeast cells and to isolate differentially aged cells for microscopic snapshots via manual dissection of daughter cells from the larger mother cell. Here, we are unique in achieving continuous and high-resolution microscopic imaging of the entire replicative lifespan of single yeast cells. Our microfluidic dissection platform features an optically prealigned single focal plane and an integrated array of soft elastomer-based micropads, used together to allow for trapping of mother cells, removal of daughter cells, monitoring gradual changes in aging, and unprecedented microscopic imaging of the whole aging process. Using the platform, we found remarkable age-associated changes in phenotypes (e.g., that cells can show strikingly differential cell and vacuole morphologies at the moment of their deaths), indicating substantial heterogeneity in cell aging and death. We envision the microfluidic dissection platform to become a major tool in aging research.
Rejuvenation by cell reprogramming: A new horizon in gerontology
The discovery of animal cloning and subsequent development of cell reprogramming technology were quantum leaps as they led to the achievement of rejuvenation by cell reprogramming and the emerging view that aging is a reversible epigenetic process. Here, we will first summarize the experimental achievements over the last 7 years in cell and animal rejuvenation. Then, a comparison will be made between the principles of the cumulative DNA damage theory of aging and the basic facts underlying the epigenetic model of aging, including Horvath's epigenetic clock. The third part will apply both models to two natural processes, namely, the setting of the aging clock in the mammalian zygote and the changes in the aging clock along successive generations in mammals. The first study demonstrating that skin fibroblasts from healthy centenarians can be rejuvenated by cell reprogramming was published in 2011 and will be discussed in some detail. Other cell rejuvenation studies in old humans and rodents published afterwards will be very briefly mentioned. The only in vivo study reporting that a number of organs of old progeric mice can be rejuvenated by cyclic partial reprogramming will also be described in some detail. The cumulative DNA damage theory of aging postulates that as an animal ages, toxic reactive oxygen species generated as byproducts of the mitochondria during respiration induce a random and progressive damage in genes thus leading cells to a progressive functional decline. The epigenetic model of aging postulates that there are epigenetic marks of aging that increase with age, leading to a progressive derepression of DNA which in turn causes deregulated expression of genes that disrupt cell function. The cumulative DNA damage model of aging fails to explain the resetting of the aging clock at the time of conception as well as the continued vitality of species as millenia go by. In contrast, the epigenetic model of aging straightforwardly explains both biologic phenomena. A plausible initial application of rejuvenation in vivo would be preventing adult individuals from aging thus eliminating a major risk factor for end of life pathologies. Further, it may allow the gradual achievement of whole body rejuvenation.Fil: Goya, Rodolfo Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner". Universidad Nacional de la Plata. Facultad de Ciencias Médicas. Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner"; ArgentinaFil: Lehmann, Marianne. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner". Universidad Nacional de la Plata. Facultad de Ciencias Médicas. Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner"; ArgentinaFil: Chiavellini, Priscila. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner". Universidad Nacional de la Plata. Facultad de Ciencias Médicas. Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner"; ArgentinaFil: Canatelli Mallat, Martina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner". Universidad Nacional de la Plata. Facultad de Ciencias Médicas. Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner"; ArgentinaFil: Hereñú, Claudia Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Farmacología Experimental de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Farmacología Experimental de Córdoba; ArgentinaFil: Brown, Oscar Alfredo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner". Universidad Nacional de la Plata. Facultad de Ciencias Médicas. Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner"; Argentin
Prediction Of Cancer Possibility By Pattern Recognition And Statistical Study Of Expression Of Gene Level Of Cancer Cells
The activity of the p53 tumor-suppressor protein has a key role in controlling both cancer and aging: under activity encourages the growth of cancer, and over activity can accelerate the aging process. The p53 protein is a tumor suppressor encoded by a gene whose disruption is associated with approximately 50 to 55 percent of human cancers. The p53 protein acts as a checkpoint in the cell cycle, either preventing or initiating programmed cell death (Apoptosis). p53 regulating genes MDM2, PARP, Oncogenicras, and p21 etc play a crucial role in tumor suppression
Recommended from our members
Nox2 dependent redox-regulation of microglial response to amyloid-β stimulation and microgliosis in aging
Microglia express constitutively a Nox2 enzyme that is involved in neuroinflammation by the
generation of reactive oxygen species (ROS). Amyloid β (Aβ) plays a crucial role in Alzheimer’s disease.
However, the mechanism of Aβ-induced microglial dysfunction and redox-regulation of microgliosis
in aging remains unclear. In this study, we examined Nox2-derived ROS in mediating microglial
response to Aβ peptide 1–42 (Aβ42) stimulation in vitro, in aging-associated microgliosis in vivo and in
post-mortem human samples. Compared to controls, Aβ42 markedly induced BV2 cell ROS production,
Nox2 expression, p47phox and ERK1/2 phosphorylation, cell proliferation and IL-1β secretion. All
these changes could be inhibited to the control levels in the presence of Nox2 inhibitor or superoxide
scavenger. Compared to young (3–4 months) controls, midbrain tissues from wild-type aging mice (20–
22 months) had significantly higher levels of Nox2-derived ROS production, Aβ deposition, microgliosis
and IL-1β production. However, these aging-related changes were reduced or absent in Nox2 knockout
aging mice. Clinical significance of aging-associated Nox2 activation, microgliosis and IL-1β production
was investigated using post-mortem midbrain tissues of humans at young (25–38 years) and old age
(61–85 years). In conclusion, Nox2-dependent redox-signalling is crucial in microglial response to Aβ42
stimulation and in aging-associated microgliosis and brain inflammation
Editorial: Yeast cell aging and death
A conspicuous amount of knowledge about the molecular biol- ogy of the cell has come from studies on yeast Saccharomyces cere- visiae, mostly because of its unrivaled qualities as a toolkit for molecular genetics study. The discovery in the late 90’s that this unicellular eukaryote also may activate cell death programs both physiologically, like mammalian apoptotic cell death (Madeo, Frohlich and Frohlich 1997), and under environmental stress, completed the yeast-toolkit. The rst thematic issue on this topic of FEMS Yeast Research four years ago witnessed the no- ticeable amount of research carried out to get a deeper insight into the mechanisms of fundamental biological processes, al- ready discovered in yeast, such as genetic stability and expres- sion, cell cycle, organelle biogenesis and cross-talk. Indeed, it has been possible to study these processes with the added di- mension to discover their function and interrelationships in cell homeostasis maintenance considering also the effect of envi- ronmental cues
Force balance and membrane shedding at the Red Blood Cell surface
During the aging of the red-blood cell, or under conditions of extreme
echinocytosis, membrane is shed from the cell plasma membrane in the form of
nano-vesicles. We propose that this process is the result of the
self-adaptation of the membrane surface area to the elastic stress imposed by
the spectrin cytoskeleton, via the local buckling of membrane under increasing
cytoskeleton stiffness. This model introduces the concept of force balance as a
regulatory process at the cell membrane, and quantitatively reproduces the rate
of area loss in aging red-blood cells.Comment: 4 pages, 3 figure
Non cell autonomous upregulation of CDKN2 transcription linked to progression of chronic hepatitis C disease
Chronic hepatitis C virus infection (C-HC) is associated with higher mortality arising from hepatic and extrahepatic disease. This may be due to accelerated biological aging; however, studies in C-HC have thus far been based solely on telomere length as a biomarker of aging (BoA). In this study, we have evaluated CDKN2 locus transcripts as alternative BoAs in C-HC. Our results suggest that C-HC induces non-cell-autonomous senescence and accelerates biological aging. The CDKN2 locus may provide a link between C-HC and increased susceptibility to age-associated diseases and provides novel biomarkers for assessing its impact on aging processes in man
- …
