5,332 research outputs found

    Towards a style-specific basis for computational beat tracking

    Get PDF
    Outlined in this paper are a number of sources of evidence, from psychological, ethnomusicological and engineering grounds, to suggest that current approaches to computational beat tracking are incomplete. It is contended that the degree to which cultural knowledge, that is, the specifics of style and associated learnt representational schema, underlie the human faculty of beat tracking has been severely underestimated. Difficulties in building general beat tracking solutions, which can provide both period and phase locking across a large corpus of styles, are highlighted. It is probable that no universal beat tracking model exists which does not utilise a switching model to recognise style and context prior to application

    Onset Event Decoding Exploiting the Rhythmic Structure of Polyphonic Music

    Get PDF
    (c)2011 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works. Published version: IEEE Journal of Selected Topics in Signal Processing 5(6): 1228-1239, Oct 2011. DOI:10.1109/JSTSP.2011.214622

    Reliability-Informed Beat Tracking of Musical Signals

    Get PDF
    Abstract—A new probabilistic framework for beat tracking of musical audio is presented. The method estimates the time between consecutive beat events and exploits both beat and non-beat information by explicitly modeling non-beat states. In addition to the beat times, a measure of the expected accuracy of the estimated beats is provided. The quality of the observations used for beat tracking is measured and the reliability of the beats is automatically calculated. A k-nearest neighbor regression algorithm is proposed to predict the accuracy of the beat estimates. The performance of the beat tracking system is statistically evaluated using a database of 222 musical signals of various genres. We show that modeling non-beat states leads to a significant increase in performance. In addition, a large experiment where the parameters of the model are automatically learned has been completed. Results show that simple approximations for the parameters of the model can be used. Furthermore, the performance of the system is compared with existing algorithms. Finally, a new perspective for beat tracking evaluation is presented. We show how reliability information can be successfully used to increase the mean performance of the proposed algorithm and discuss how far automatic beat tracking is from human tapping. Index Terms—Beat-tracking, beat quality, beat-tracking reliability, k-nearest neighbor (k-NN) regression, music signal processing. I

    Drum Transcription via Classification of Bar-level Rhythmic Patterns

    Get PDF
    acceptedMatthias Mauch is supported by a Royal Academy of Engineering Research Fellowshi

    Deep Learning for Audio Signal Processing

    Full text link
    Given the recent surge in developments of deep learning, this article provides a review of the state-of-the-art deep learning techniques for audio signal processing. Speech, music, and environmental sound processing are considered side-by-side, in order to point out similarities and differences between the domains, highlighting general methods, problems, key references, and potential for cross-fertilization between areas. The dominant feature representations (in particular, log-mel spectra and raw waveform) and deep learning models are reviewed, including convolutional neural networks, variants of the long short-term memory architecture, as well as more audio-specific neural network models. Subsequently, prominent deep learning application areas are covered, i.e. audio recognition (automatic speech recognition, music information retrieval, environmental sound detection, localization and tracking) and synthesis and transformation (source separation, audio enhancement, generative models for speech, sound, and music synthesis). Finally, key issues and future questions regarding deep learning applied to audio signal processing are identified.Comment: 15 pages, 2 pdf figure

    A Causal Rhythm Grouping

    Get PDF
    corecore