2 research outputs found

    Mining Time-delayed Gene Regulation Patterns from Gene Expression Data

    Get PDF
    Discovered gene regulation networks are very helpful to predict unknown gene functions. The activating and deactivating relations between genes and genes are mined from microarray gene expression data. There are evidences showing that multiple time units delay exist in a gene regulation process. Association rule mining technique is very suitable for finding regulation relations among genes. However, current association rule mining techniques cannot handle temporally ordered transactions. We propose a modified association rule mining technique for efficiently discovering time-delayed regulation relationships among genes.By analyzing gene expression data, we can discover gene relations. Thus, we use modified association rule to mine gene regulation patterns. Our proposed method, BC3, is designed to mine time-delayed gene regulation patterns with length 3 from time series gene expression data. However, the front two items are regulators, and the last item is their affecting target. First we use Apriori to find frequent 2-itemset in order to figure backward to BL1. The Apriori mined the frequent 2-itemset in the same time point, so we make the L2 split to length one for having relation in the same time point. Then we combine BL1 with L1 to a new ordered-set BC2 with time-delayed relations. After pruning BC2 with the threshold, BL2 is derived. The results are worked out by BL2 joining itself to BC3, and sifting BL3 from BC3. We use yeast gene expression data to evaluate our method and analyze the results to show our work is efficient

    Gene regulatory network modeling via global optimization of high-order dynamic Bayesian network

    Get PDF
    Abstract Background Dynamic Bayesian network (DBN) is among the mainstream approaches for modeling various biological networks, including the gene regulatory network (GRN). Most current methods for learning DBN employ either local search such as hill-climbing, or a meta stochastic global optimization framework such as genetic algorithm or simulated annealing, which are only able to locate sub-optimal solutions. Further, current DBN applications have essentially been limited to small sized networks. Results To overcome the above difficulties, we introduce here a deterministic global optimization based DBN approach for reverse engineering genetic networks from time course gene expression data. For such DBN models that consist only of inter time slice arcs, we show that there exists a polynomial time algorithm for learning the globally optimal network structure. The proposed approach, named GlobalMIT+, employs the recently proposed information theoretic scoring metric named mutual information test (MIT). GlobalMIT+ is able to learn high-order time delayed genetic interactions, which are common to most biological systems. Evaluation of the approach using both synthetic and real data sets, including a 733 cyanobacterial gene expression data set, shows significantly improved performance over other techniques. Conclusions Our studies demonstrate that deterministic global optimization approaches can infer large scale genetic networks
    corecore